L. Bossi, P. Falorni, L. Capineri, G. Pochanin, F. Crawford
{"title":"Reduction of proximal metal structures interference for a Holographic RADAR 3D-Printed antenna","authors":"L. Bossi, P. Falorni, L. Capineri, G. Pochanin, F. Crawford","doi":"10.1109/iwagpr50767.2021.9843184","DOIUrl":null,"url":null,"abstract":"Holographic RADAR images are used for investigating dielectric discontinuities in the soil. We use a holographic RADAR for landmine classification in humanitarian demining efforts. To improve the performance of the holographic RADAR, we developed an innovative 3D-Printed plastic waveguide antenna. The back-lobe radiation of this antenna interacts with the metallic mechanical scanning system generating artefacts in the images. To reduce the interaction effects, we built a Faraday cage for the antenna. To validate the performance of this shielded antenna we built a laboratory test bed in which electromagnetically similar objects to landmines could be placed in a controlled environment to inspect and visualize the shield’s effects. For this experiment we have used a box filled with water. The results show that the Faraday cage has a significant impact on the attenuation of interference in the images. These encouraging results indicate that our antenna design can be improved by reducing the radiation back lobe effect.","PeriodicalId":170169,"journal":{"name":"2021 11th International Workshop on Advanced Ground Penetrating Radar (IWAGPR)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Workshop on Advanced Ground Penetrating Radar (IWAGPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iwagpr50767.2021.9843184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Holographic RADAR images are used for investigating dielectric discontinuities in the soil. We use a holographic RADAR for landmine classification in humanitarian demining efforts. To improve the performance of the holographic RADAR, we developed an innovative 3D-Printed plastic waveguide antenna. The back-lobe radiation of this antenna interacts with the metallic mechanical scanning system generating artefacts in the images. To reduce the interaction effects, we built a Faraday cage for the antenna. To validate the performance of this shielded antenna we built a laboratory test bed in which electromagnetically similar objects to landmines could be placed in a controlled environment to inspect and visualize the shield’s effects. For this experiment we have used a box filled with water. The results show that the Faraday cage has a significant impact on the attenuation of interference in the images. These encouraging results indicate that our antenna design can be improved by reducing the radiation back lobe effect.