Performance comparison of compressive sparse channel estimation and feedback in 5G for hyper MIMO system

V. Adinarayana, K. Krishna, P. R. Kumar, K. Lakshminarayana
{"title":"Performance comparison of compressive sparse channel estimation and feedback in 5G for hyper MIMO system","authors":"V. Adinarayana, K. Krishna, P. R. Kumar, K. Lakshminarayana","doi":"10.1109/ICCS1.2017.8326008","DOIUrl":null,"url":null,"abstract":"Substantial MIMO (large-scale antenna systems, massive or hyper MIMO) differed from the current 4G technology because of preference in utilization of greater number of tune antennas over active terminals, Time-Division and Frequency-Division based Duplexing procedures. Generally Antennas are dependent on estimation accuracy of the channel matrix coefficients. In this work the Frequency division duplexing is compared with the Time division duplexing (TDD) type with feedback. Message passing methods convey multiple measurements is adopted to study the Sparsity of the hyper MIMO channels under frequency selective conditions. Initially the identification of active non-zero taps is done, followed by the channel coefficients estimation at these taps using M-AMP proposed technique. The output in FDD domain clearly manifests that the efficiency of the system is improved in terms of normalized error reduction for the parameters of SNR number of pilots and level of Sparsity.","PeriodicalId":367360,"journal":{"name":"2017 IEEE International Conference on Circuits and Systems (ICCS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Circuits and Systems (ICCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCS1.2017.8326008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Substantial MIMO (large-scale antenna systems, massive or hyper MIMO) differed from the current 4G technology because of preference in utilization of greater number of tune antennas over active terminals, Time-Division and Frequency-Division based Duplexing procedures. Generally Antennas are dependent on estimation accuracy of the channel matrix coefficients. In this work the Frequency division duplexing is compared with the Time division duplexing (TDD) type with feedback. Message passing methods convey multiple measurements is adopted to study the Sparsity of the hyper MIMO channels under frequency selective conditions. Initially the identification of active non-zero taps is done, followed by the channel coefficients estimation at these taps using M-AMP proposed technique. The output in FDD domain clearly manifests that the efficiency of the system is improved in terms of normalized error reduction for the parameters of SNR number of pilots and level of Sparsity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
5G超MIMO系统中压缩稀疏信道估计与反馈的性能比较
大量MIMO(大规模天线系统,大规模或超MIMO)不同于当前的4G技术,因为它更倾向于利用更多数量的调谐天线,而不是有源终端、基于时分和频分的双工程序。一般来说,天线依赖于信道矩阵系数的估计精度。本文将分频双工与带反馈的时分双工(TDD)进行了比较。采用传递多个测量值的消息传递方法,研究了频率选择条件下超MIMO信道的稀疏性。首先进行有源非零抽头的识别,然后使用M-AMP提出的技术在这些抽头处估计信道系数。FDD域中的输出清楚地表明,系统在信噪比、导频数和稀疏度参数的归一化误差减小方面的效率得到了提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Screen content coding using code repository for compound image compression Survey of data and storage security in cloud computing ORBOT — An efficient & intelligent mono copter Design of multiband microstrip patch antenna for IOT applications Arc-shaped cantilever beam RF MEMS switch for low actuation voltage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1