Pyramid Fusion Attention Network For Single Image Super-Resolution

Hao He, Zongcai Du, Wenfeng Li, Jie Tang, Gangshan Wu
{"title":"Pyramid Fusion Attention Network For Single Image Super-Resolution","authors":"Hao He, Zongcai Du, Wenfeng Li, Jie Tang, Gangshan Wu","doi":"10.1109/icassp43922.2022.9747609","DOIUrl":null,"url":null,"abstract":"Recently, convolutional neural network (CNN) has made a mighty advance in image super-resolution (SR). Most recent models exploit attention mechanism (AM) to focus on high-frequency information. However, these methods exclusively consider interdependencies among channels or spatials, leading to equal treatment of channel-wise or spatial-wise features thus hindering the power of AM. In this paper, we propose a pyramid fusion attention network (PFAN) to tackle this problem. Specifically, a novel pyramid fusion attention (PFA) is developed where stacked residual blocks are employed to model the relationship between pixels among all channels, and pyramid fusion structure is adopted to expand receptive field. Besides, a progressive backward fusion strat-egy is introduced to make full use of hierarchical features, which are beneficial to obtaining more contextual representations. Comprehensive experiments demonstrate the superiority of our proposed PFAN against state-of-the-art methods.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9747609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recently, convolutional neural network (CNN) has made a mighty advance in image super-resolution (SR). Most recent models exploit attention mechanism (AM) to focus on high-frequency information. However, these methods exclusively consider interdependencies among channels or spatials, leading to equal treatment of channel-wise or spatial-wise features thus hindering the power of AM. In this paper, we propose a pyramid fusion attention network (PFAN) to tackle this problem. Specifically, a novel pyramid fusion attention (PFA) is developed where stacked residual blocks are employed to model the relationship between pixels among all channels, and pyramid fusion structure is adopted to expand receptive field. Besides, a progressive backward fusion strat-egy is introduced to make full use of hierarchical features, which are beneficial to obtaining more contextual representations. Comprehensive experiments demonstrate the superiority of our proposed PFAN against state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单幅图像超分辨率金字塔融合注意网络
近年来,卷积神经网络(CNN)在图像超分辨率(SR)方面取得了长足的进步。最近的模型利用注意机制(AM)来关注高频信息。然而,这些方法只考虑通道或空间之间的相互依赖性,导致对通道或空间特征的平等对待,从而阻碍了AM的力量。在本文中,我们提出了一个金字塔融合注意力网络(PFAN)来解决这个问题。具体而言,提出了一种新的金字塔融合注意(PFA)方法,利用堆叠残差块来模拟各通道之间像素之间的关系,并采用金字塔融合结构来扩展接受域。此外,引入了一种递进后向融合策略,充分利用层次特征,有利于获得更多的上下文表示。综合实验证明了我们提出的PFAN相对于最先进的方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatio-Temporal Attention Graph Convolution Network for Functional Connectome Classification Improving Biomedical Named Entity Recognition with a Unified Multi-Task MRC Framework Combining Multiple Style Transfer Networks and Transfer Learning For LGE-CMR Segmentation Sensors to Sign Language: A Natural Approach to Equitable Communication Estimation of the Admittance Matrix in Power Systems Under Laplacian and Physical Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1