Continuous-Graph Attentional Neural Networks for Temporal Link Prediction

Jiawei Shi, Jian Shu
{"title":"Continuous-Graph Attentional Neural Networks for Temporal Link Prediction","authors":"Jiawei Shi, Jian Shu","doi":"10.1109/ICCT56141.2022.10072410","DOIUrl":null,"url":null,"abstract":"Link prediction on temporal networks is a hot issue in the research of network evolution. Existing works typically employ graph neural networks and a temporal feature extractor to build prediction model. However, such methods are facing two problems: 1) the over smoothing becomes a challenge when considering capturing deeper spatiotemporal dependence. 2) temporal feature extraction is still a challenge. In this research, we introduce a novel link prediction model named Continuous-graph attentional neural networks for temporal link prediction (LP-CGA). The model is based on an improved Auto-Encoder, which not only embeds structure information of temporal networks but also considers the evolution trend. Then, the deeper spatiotemporal information is mined through an attention-based ordinary differential equation (ODE). Two real dynamic network datasets, ITC and Infocom06, are used for experiments. The experimental results show that the proposed model is more accurate compared to other baseline methods.","PeriodicalId":294057,"journal":{"name":"2022 IEEE 22nd International Conference on Communication Technology (ICCT)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 22nd International Conference on Communication Technology (ICCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCT56141.2022.10072410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Link prediction on temporal networks is a hot issue in the research of network evolution. Existing works typically employ graph neural networks and a temporal feature extractor to build prediction model. However, such methods are facing two problems: 1) the over smoothing becomes a challenge when considering capturing deeper spatiotemporal dependence. 2) temporal feature extraction is still a challenge. In this research, we introduce a novel link prediction model named Continuous-graph attentional neural networks for temporal link prediction (LP-CGA). The model is based on an improved Auto-Encoder, which not only embeds structure information of temporal networks but also considers the evolution trend. Then, the deeper spatiotemporal information is mined through an attention-based ordinary differential equation (ODE). Two real dynamic network datasets, ITC and Infocom06, are used for experiments. The experimental results show that the proposed model is more accurate compared to other baseline methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于时间链接预测的连续图注意神经网络
时间网络的链路预测是网络演化研究中的一个热点问题。现有的研究通常采用图神经网络和时间特征提取器来构建预测模型。然而,这些方法面临两个问题:1)在考虑捕获更深的时空依赖性时,过度平滑成为一个挑战。2)时间特征提取仍然是一个挑战。在本研究中,我们引入了一种新的链路预测模型——连续图注意神经网络用于时间链路预测(LP-CGA)。该模型基于一种改进的自编码器,不仅嵌入了时间网络的结构信息,而且考虑了网络的演化趋势。然后,通过基于注意力的常微分方程(ODE)挖掘更深层次的时空信息。实验使用了两个真实的动态网络数据集ITC和Infocom06。实验结果表明,与其他基线方法相比,该模型具有更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anomaly Detection Method For Interactive Data of Third-Party Load Aggregation Platform Based on Multidimensional Feature Information Fusion Stable and Robust Improvement of AMP for Supporting Massive Connectivity Power Allocation and Beamforming Vectors Optimization in STAR-RIS Assisted SWIPT Joint Identification of Modulation and Channel Coding Based on Deep Learning Geometric Feature Detection of Space Targets Based on Color Space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1