Detecting and localizing border crossings using RF links

Peter Hillyard, Neal Patwari
{"title":"Detecting and localizing border crossings using RF links","authors":"Peter Hillyard, Neal Patwari","doi":"10.1145/2737095.2737126","DOIUrl":null,"url":null,"abstract":"Detecting and localizing a person crossing a line segment, i.e., border, is valuable information in security and data analytic applications. To that end, we use the received signal strength (RSS) measured on RF links between nodes deployed linearly along a border as a border crossing detection and localization system. RSS measurements from any single RF link are noisy and prone to variations due to environmental changes (e.g. branches moving in wind). The redundant overlapping nature of the links between pairs of nodes in our proposed system provides an opportunity to mitigate these issues. We propose a hidden Markov model (HMM) which models the RSS on network links as a function of the neighboring nodes between which a person crosses. We demonstrate that the forward-backward solution to this HMM provides a robust and real time border crossing detection and localization system.","PeriodicalId":318992,"journal":{"name":"Proceedings of the 14th International Conference on Information Processing in Sensor Networks","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th International Conference on Information Processing in Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2737095.2737126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting and localizing a person crossing a line segment, i.e., border, is valuable information in security and data analytic applications. To that end, we use the received signal strength (RSS) measured on RF links between nodes deployed linearly along a border as a border crossing detection and localization system. RSS measurements from any single RF link are noisy and prone to variations due to environmental changes (e.g. branches moving in wind). The redundant overlapping nature of the links between pairs of nodes in our proposed system provides an opportunity to mitigate these issues. We propose a hidden Markov model (HMM) which models the RSS on network links as a function of the neighboring nodes between which a person crosses. We demonstrate that the forward-backward solution to this HMM provides a robust and real time border crossing detection and localization system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用射频链路检测和定位过境点
检测和定位跨越线段(即边界)的人在安全和数据分析应用中是有价值的信息。为此,我们使用在沿边界线性部署的节点之间的RF链路上测量的接收信号强度(RSS)作为边界穿越检测和定位系统。任何单一射频链路的RSS测量值都有噪声,并且容易因环境变化而发生变化(例如,分支在风中移动)。在我们提出的系统中,节点对之间链路的冗余重叠特性为缓解这些问题提供了机会。我们提出了一个隐马尔可夫模型(HMM),该模型将网络链接上的RSS建模为一个人所经过的相邻节点的函数。我们证明了该HMM的正向后解决方案提供了一个鲁棒的实时边界检测和定位系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing multi-hop calibration errors in large-scale mobile sensor networks FuzzyCAT: a novel procedure for refining the F-transform based sensor data compression CleanHands: an integrated monitoring system for control of hospital acquired infections A low-cost sensor platform for large-scale wideband spectrum monitoring Detecting malicious morphological alterations of ECG signals in body sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1