Electronics for deep space cryogenic applications

R. Patterson, A. Hammoud, J. Dickman, S. Gerber, M. Elbuluk, E. Overton
{"title":"Electronics for deep space cryogenic applications","authors":"R. Patterson, A. Hammoud, J. Dickman, S. Gerber, M. Elbuluk, E. Overton","doi":"10.1109/WOLTE.2002.1022482","DOIUrl":null,"url":null,"abstract":"Deep space probes and planetary exploration missions require electrical power management and control systems that are capable of efficient and reliable operation in very cold temperature environments. Typically, in deep space probes, heating elements are used to keep the spacecraft electronics near room temperature. The utilization of power electronics designed for and operated at low temperature will contribute to increasing efficiency and improving reliability of space power systems. At NASA Glenn Research Center, commercial-off-the-shelf devices as well as developed components are being investigated for potential use at low temperatures. These devices include semiconductor switching devices, magnetics, and capacitors. Integrated circuits such as digital-to-analog and analog-to-digital converters, DC/DC converters, operational amplifiers, and oscillators are also being evaluated. In this paper, results will be presented for selected analog-to-digital converters, oscillators, DC/DC converters, and pulse width modulation (PWM) controllers.","PeriodicalId":338080,"journal":{"name":"Proceedings of the 5th European Workshop on Low Temperature Electronics","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th European Workshop on Low Temperature Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOLTE.2002.1022482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Deep space probes and planetary exploration missions require electrical power management and control systems that are capable of efficient and reliable operation in very cold temperature environments. Typically, in deep space probes, heating elements are used to keep the spacecraft electronics near room temperature. The utilization of power electronics designed for and operated at low temperature will contribute to increasing efficiency and improving reliability of space power systems. At NASA Glenn Research Center, commercial-off-the-shelf devices as well as developed components are being investigated for potential use at low temperatures. These devices include semiconductor switching devices, magnetics, and capacitors. Integrated circuits such as digital-to-analog and analog-to-digital converters, DC/DC converters, operational amplifiers, and oscillators are also being evaluated. In this paper, results will be presented for selected analog-to-digital converters, oscillators, DC/DC converters, and pulse width modulation (PWM) controllers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深空低温应用电子器件
深空探测和行星探测任务需要能够在极冷温度环境下高效可靠运行的电力管理和控制系统。通常,在深空探测器中,加热元件用于使航天器电子设备保持在室温附近。利用为低温设计和运行的电力电子设备将有助于提高空间电力系统的效率和可靠性。在美国宇航局格伦研究中心,商业现货设备以及开发的组件正在研究在低温下的潜在用途。这些器件包括半导体开关器件、磁性器件和电容器。集成电路,如数模和模数转换器、DC/DC转换器、运算放大器和振荡器也正在评估中。在本文中,将介绍所选模数转换器、振荡器、DC/DC转换器和脉宽调制(PWM)控制器的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Superconducting cameras for optical astronomy A 4.2 K readout channel in a standard 0.7 /spl mu/m CMOS process for a photoconductor array camera Interaction of super high frequency radiation with superconducting Bi(Pb)-Sr-Ca-Cu-O thin-film structures Temperature dependence of generation-recombination noise in p-n junctions Degradation of hard MOS devices at low temperature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1