The optimality in Neyman-Pearson sense in the distributed CFAR detection with multisensor

Guan Jian, Meng Xiang-wei, Peng Ying-ning, He You
{"title":"The optimality in Neyman-Pearson sense in the distributed CFAR detection with multisensor","authors":"Guan Jian, Meng Xiang-wei, Peng Ying-ning, He You","doi":"10.1109/NRC.2002.999695","DOIUrl":null,"url":null,"abstract":"The optimality in Neyman-Pearson (NP) sense in distributed CFAR detection with multisensor is discussed. Most of the existing analysis of optimization of distributed CFAR detection in the NP sense is done under the limitation of binary local decision and no communication among local processors. We find that the real optimization in the NP sense can not be realized under this limitation. If local test statistics (LTS) are used and fused, the real optimal NP test could be implemented by likelihood ratio test (LRT).","PeriodicalId":448055,"journal":{"name":"Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRC.2002.999695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The optimality in Neyman-Pearson (NP) sense in distributed CFAR detection with multisensor is discussed. Most of the existing analysis of optimization of distributed CFAR detection in the NP sense is done under the limitation of binary local decision and no communication among local processors. We find that the real optimization in the NP sense can not be realized under this limitation. If local test statistics (LTS) are used and fused, the real optimal NP test could be implemented by likelihood ratio test (LRT).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多传感器分布式CFAR检测中Neyman-Pearson意义上的最优性
讨论了多传感器分布式CFAR检测中Neyman-Pearson (NP)意义上的最优性。现有的基于NP意义的分布式CFAR检测优化分析大多是在二元局部决策和局部处理器间无通信的限制下进行的。我们发现在这个限制下,NP意义上的真正优化是无法实现的。通过融合局部检验统计量,利用似然比检验实现真正的最优NP检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acceleration compensation by matched filtering Model-based adaptive detection and DOA estimation using separated sub-arrays Theoretical analysis of small sample size behaviour of eigenvector projection technique applied to STAP Sparse mutual coupling matrix and sensor gain/phase estimation for array auto-calibration A new constrained joint-domain localized approach for airborne radars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1