Adaptive expanding B-snake model for extracting ultrasound breast lump boundary

Chen Yintao, K. C. Keong, Wee Siew-Bock, Zou Qingsong
{"title":"Adaptive expanding B-snake model for extracting ultrasound breast lump boundary","authors":"Chen Yintao, K. C. Keong, Wee Siew-Bock, Zou Qingsong","doi":"10.1109/ANZIIS.2001.974042","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a new adaptive expanding B-snake model (AEBS) to extract 2-D ultrasound breast lump boundaries, using B-spline to split the whole snake energy into smaller parts to achieve both global deformation and local variation. Due to the noisy property of ultrasound breast lump images, initial model is loaded inside lump area and an expanding force is used to reduce the 'noise' from the breast tissues. Which has been improved after a pre-processing before the AEBS. Local elements' gradient is used as a feedback of contour deformation to make the expanding force to act intelligently. The balance of all defined forces in t-n (tangent and normal) coordinates is used as a terminating criterion. A serial of parallel-scanned ultrasound breast lump images have been used in the testing and results show our method works correctly and consistently.","PeriodicalId":383878,"journal":{"name":"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZIIS.2001.974042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we introduce a new adaptive expanding B-snake model (AEBS) to extract 2-D ultrasound breast lump boundaries, using B-spline to split the whole snake energy into smaller parts to achieve both global deformation and local variation. Due to the noisy property of ultrasound breast lump images, initial model is loaded inside lump area and an expanding force is used to reduce the 'noise' from the breast tissues. Which has been improved after a pre-processing before the AEBS. Local elements' gradient is used as a feedback of contour deformation to make the expanding force to act intelligently. The balance of all defined forces in t-n (tangent and normal) coordinates is used as a terminating criterion. A serial of parallel-scanned ultrasound breast lump images have been used in the testing and results show our method works correctly and consistently.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超声乳腺肿块边界提取的自适应扩展b蛇模型
本文引入一种新的自适应扩展b -蛇模型(AEBS)来提取二维超声乳腺肿块边界,利用b样条将整个蛇形能量分割成更小的部分,以实现整体变形和局部变化。由于超声乳腺肿块图像的噪声特性,将初始模型加载到肿块区域内,并使用膨胀力来降低乳腺组织的“噪声”。经过AEBS前的预处理后,性能得到了改善。利用局部单元的梯度作为轮廓变形的反馈,使膨胀力发挥智能作用。在t-n(正切和法向)坐标中所有定义的力的平衡被用作终止准则。一系列平行扫描的超声乳房肿块图像被用于测试,结果表明我们的方法是正确和一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mammogram JPEG quantisation matrix optimisation for PACS Static image simulation of electronic visual prostheses Ultrasound mediated transfection of HT29 colorectal cancer cells in vitro: preliminary results Gait symmetry quantification during treadmill walking Segmentation of clinical structures for radiotherapy treatment planning: a comparison of two morphological approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1