Jaeyeon Lee, M. Sinclair, Mar González-Franco, E. Ofek, Christian Holz
{"title":"Demonstration of TORC: A Virtual Reality Controller for In-Hand High-Dexterity Finger Interaction","authors":"Jaeyeon Lee, M. Sinclair, Mar González-Franco, E. Ofek, Christian Holz","doi":"10.1145/3332167.3356898","DOIUrl":null,"url":null,"abstract":"Recent hand-held controllers have explored a variety of haptic feedback sensations for users in virtual reality by producing both kinesthetic and cutaneous feedback from virtual objects. These controllers are grounded to the user's hand and can only manipulate objects through arm and wrist motions, not using the dexterity of their fingers as they would in real life. In this paper, we present TORC, a rigid haptic controller that renders virtual object characteristics and behaviors such as texture and compliance. Users hold and squeeze TORC using their thumb and two fingers and interact with virtual objects by sliding their thumb on TORC's trackpad. During the interaction, vibrotactile motors produce sensations to each finger that represent the haptic feel of squeezing, shearing or turning an object. We demonstrate the TORC interaction scenarios for a virtual object in hand.","PeriodicalId":322598,"journal":{"name":"Adjunct Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adjunct Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3332167.3356898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Recent hand-held controllers have explored a variety of haptic feedback sensations for users in virtual reality by producing both kinesthetic and cutaneous feedback from virtual objects. These controllers are grounded to the user's hand and can only manipulate objects through arm and wrist motions, not using the dexterity of their fingers as they would in real life. In this paper, we present TORC, a rigid haptic controller that renders virtual object characteristics and behaviors such as texture and compliance. Users hold and squeeze TORC using their thumb and two fingers and interact with virtual objects by sliding their thumb on TORC's trackpad. During the interaction, vibrotactile motors produce sensations to each finger that represent the haptic feel of squeezing, shearing or turning an object. We demonstrate the TORC interaction scenarios for a virtual object in hand.