Artificial Neural Network What-If Theory

P. Buscema, W. J. Tastle
{"title":"Artificial Neural Network What-If Theory","authors":"P. Buscema, W. J. Tastle","doi":"10.4018/IJISSC.2015100104","DOIUrl":null,"url":null,"abstract":"Data sets collected independently using the same variables can be compared using a new artificial neural network called Artificial neural network What If Theory, AWIT. Given a data set that is deemed the standard reference for some object, i.e. a flower, industry, disease, or galaxy, other data sets can be compared against it to identify its proximity to the standard. Thus, data that might not lend itself well to traditional methods of analysis could identify new perspectives or views of the data and thus, potentially new perceptions of novel and innovative solutions. This method comes out of the field of artificial intelligence, particularly artificial neural networks, and utilizes both machine learning and pattern recognition to display an innovative analysis.","PeriodicalId":371573,"journal":{"name":"Int. J. Inf. Syst. Soc. Chang.","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Syst. Soc. Chang.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJISSC.2015100104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Data sets collected independently using the same variables can be compared using a new artificial neural network called Artificial neural network What If Theory, AWIT. Given a data set that is deemed the standard reference for some object, i.e. a flower, industry, disease, or galaxy, other data sets can be compared against it to identify its proximity to the standard. Thus, data that might not lend itself well to traditional methods of analysis could identify new perspectives or views of the data and thus, potentially new perceptions of novel and innovative solutions. This method comes out of the field of artificial intelligence, particularly artificial neural networks, and utilizes both machine learning and pattern recognition to display an innovative analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工神经网络假设理论
使用相同变量独立收集的数据集可以使用一种新的人工神经网络进行比较,称为人工神经网络What If Theory, AWIT。给定一个数据集,该数据集被认为是某一对象(即一朵花、一种工业、一种疾病或一个星系)的标准参考,可以将其他数据集与之进行比较,以确定其与标准的接近程度。因此,可能不适合传统分析方法的数据可以识别数据的新视角或观点,从而可能产生对新颖和创新解决方案的新看法。该方法来源于人工智能领域,特别是人工神经网络,并利用机器学习和模式识别来进行创新分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Depression, Self-Esteem, and Lifestyle Factors Among University Students in Singapore and Malaysia When Big Data Meets NFT: Challenges, Impacts, and Opportunities Do We Really Need Elderly-Friendly Integrated Care Portals?: Mind Blocks to Their Adoption and Implementation Protest Movements, Social Media, and the Role of Law Enforcement Assessing the Impact of Human Error Assessment on Organization Performance in the Software Industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1