Using a Rich Context Model for Real-Time Big Data Analytics in Twitter

Alisa Sotsenko, M. Jansen, M. Milrad, Juwel Rana
{"title":"Using a Rich Context Model for Real-Time Big Data Analytics in Twitter","authors":"Alisa Sotsenko, M. Jansen, M. Milrad, Juwel Rana","doi":"10.1109/W-FiCloud.2016.55","DOIUrl":null,"url":null,"abstract":"In this paper we present an approach for contextual big data analytics in social networks, particularly in Twitter. The combination of a Rich Context Model (RCM) with machine learning is used in order to improve the quality of the data mining techniques. We propose the algorithm and architecture of our approach for real-time contextual analysis of tweets. The proposed approach can be used to enrich and empower the predictive analytics or to provide relevant context-aware recommendations.","PeriodicalId":441441,"journal":{"name":"2016 IEEE 4th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 4th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/W-FiCloud.2016.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper we present an approach for contextual big data analytics in social networks, particularly in Twitter. The combination of a Rich Context Model (RCM) with machine learning is used in order to improve the quality of the data mining techniques. We propose the algorithm and architecture of our approach for real-time contextual analysis of tweets. The proposed approach can be used to enrich and empower the predictive analytics or to provide relevant context-aware recommendations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在Twitter中使用富上下文模型进行实时大数据分析
在本文中,我们提出了一种在社交网络中进行上下文大数据分析的方法,特别是在Twitter中。为了提高数据挖掘技术的质量,将富上下文模型(RCM)与机器学习相结合。我们提出了我们的方法的算法和架构,用于tweets的实时上下文分析。建议的方法可用于丰富和增强预测分析,或提供相关的上下文感知建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Social Network Analysis of Tweets during the Gaza War, Summer 2014 IoT Standardization - The Approach in the Field of Data Protection as a Model for Ensuring Compliance of IoT Applications? A Survey on Network Security Monitoring Systems Smart Mobile-Based Emergency Management and Notification System Investigating Metrics to Build a Benchmark Tool for Complex Event Processing Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1