Human Carrying Status in Visual Surveillance

D. Tao, Xuelong Li, S. Maybank, Xindong Wu
{"title":"Human Carrying Status in Visual Surveillance","authors":"D. Tao, Xuelong Li, S. Maybank, Xindong Wu","doi":"10.1109/CVPR.2006.138","DOIUrl":null,"url":null,"abstract":"A person’s gait changes when he or she is carrying an object such as a bag, suitcase or rucksack. As a result, human identification and tracking are made more difficult because the averaged gait image is too simple to represent the carrying status. Therefore, in this paper we first introduce a set of Gabor based human gait appearance models, because Gabor functions are similar to the receptive field profiles in the mammalian cortical simple cells. The very high dimensionality of the feature space makes training difficult. In order to solve this problem we propose a general tensor discriminant analysis (GTDA), which seamlessly incorporates the object (Gabor based human gait appearance model) structure information as a natural constraint. GTDA differs from the previous tensor based discriminant analysis methods in that the training converges. Existing methods fail to converge in the training stage. This makes them unsuitable for practical tasks. Experiments are carried out on the USF baseline data set to recognize a human’s ID from the gait silhouette. The proposed Gabor gait incorporated with GTDA is demonstrated to significantly outperform the existing appearance-based methods.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"122","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 122

Abstract

A person’s gait changes when he or she is carrying an object such as a bag, suitcase or rucksack. As a result, human identification and tracking are made more difficult because the averaged gait image is too simple to represent the carrying status. Therefore, in this paper we first introduce a set of Gabor based human gait appearance models, because Gabor functions are similar to the receptive field profiles in the mammalian cortical simple cells. The very high dimensionality of the feature space makes training difficult. In order to solve this problem we propose a general tensor discriminant analysis (GTDA), which seamlessly incorporates the object (Gabor based human gait appearance model) structure information as a natural constraint. GTDA differs from the previous tensor based discriminant analysis methods in that the training converges. Existing methods fail to converge in the training stage. This makes them unsuitable for practical tasks. Experiments are carried out on the USF baseline data set to recognize a human’s ID from the gait silhouette. The proposed Gabor gait incorporated with GTDA is demonstrated to significantly outperform the existing appearance-based methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
视觉监测中的人体携带状态
当一个人背着包、手提箱或帆布背包等物品时,他或她的步态会发生变化。结果,由于平均步态图像过于简单而无法表示携带状态,给人体识别和跟踪增加了难度。因此,在本文中,我们首先引入了一套基于Gabor的人类步态外观模型,因为Gabor功能类似于哺乳动物皮层简单细胞的感受野轮廓。特征空间的高维使得训练变得困难。为了解决这一问题,我们提出了一种通用张量判别分析(GTDA),它无缝地将物体(基于Gabor的人类步态外观模型)的结构信息作为自然约束。GTDA与以往基于张量的判别分析方法的不同之处在于训练是收敛的。现有的方法在训练阶段无法收敛。这使得它们不适合执行实际任务。在USF基线数据集上进行实验,从步态轮廓中识别人的身份。结合GTDA的Gabor步态被证明明显优于现有的基于外观的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Dynamic Bayesian Network Model for Autonomous 3D Reconstruction from a Single Indoor Image Efficient Maximally Stable Extremal Region (MSER) Tracking Transformation invariant component analysis for binary images Region-Tree Based Stereo Using Dynamic Programming Optimization Probabilistic 3D Polyp Detection in CT Images: The Role of Sample Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1