Content-based sub-image retrieval using relevance feedback

Jie Luo, M. Nascimento
{"title":"Content-based sub-image retrieval using relevance feedback","authors":"Jie Luo, M. Nascimento","doi":"10.1145/1032604.1032607","DOIUrl":null,"url":null,"abstract":"This paper presents the use of relevance feedback to the problem of content-based sub-image retrieval (CBsIR). Relevance feedback is used to improve the accuracy of successive retrievals via a tile re-weighting scheme that assigns penalties to each tile of database images and updates the tile penalties for all relevant images retrieved at each iteration using both the relevant (positive) and irrelevant (negative) images identified by the user. Performance evaluation on a dataset of over 10,000 images shows the effectiveness and efficiency of the proposed framework. Using 64 quantized colors in the RGB color space, the system can achieve a stable average recall value of 70% within the top 20 retrieved (and presented) images after only 5 iterations, with each such iteration taking about 2 seconds.","PeriodicalId":415406,"journal":{"name":"ACM International Workshop on Multimedia Databases","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM International Workshop on Multimedia Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1032604.1032607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

This paper presents the use of relevance feedback to the problem of content-based sub-image retrieval (CBsIR). Relevance feedback is used to improve the accuracy of successive retrievals via a tile re-weighting scheme that assigns penalties to each tile of database images and updates the tile penalties for all relevant images retrieved at each iteration using both the relevant (positive) and irrelevant (negative) images identified by the user. Performance evaluation on a dataset of over 10,000 images shows the effectiveness and efficiency of the proposed framework. Using 64 quantized colors in the RGB color space, the system can achieve a stable average recall value of 70% within the top 20 retrieved (and presented) images after only 5 iterations, with each such iteration taking about 2 seconds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于内容的关联反馈子图像检索
本文提出了将相关反馈应用于基于内容的子图像检索(CBsIR)问题。相关反馈用于提高连续检索的准确性,方法是通过一种tile重新加权方案,该方案为数据库图像的每个tile分配惩罚,并使用用户识别的相关(正面)和不相关(负面)图像更新每次迭代检索的所有相关图像的tile惩罚。在超过10,000张图像的数据集上的性能评估表明了所提出框架的有效性和效率。使用RGB色彩空间中的64种量化颜色,系统只需5次迭代,每次迭代大约需要2秒,就可以在前20张检索(和呈现)图像中实现稳定的平均召回值70%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic image annotation and retrieval using subspace clustering algorithm Indexing of variable length multi-attribute motion data A motion based scene tree for browsing and retrieval of compressed videos VRules: an effective association-based classifier for videos Content-based sub-image retrieval using relevance feedback
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1