{"title":"Active implantable sensor powered by ultrasounds with application in the monitoring of physiological parameters for soft tissues","authors":"B. Rosa, Guang-Zhong Yang","doi":"10.1109/BSN.2016.7516281","DOIUrl":null,"url":null,"abstract":"Ultrasound imaging is a proven diagnostic tool to assess a myriad of physiological and pathological conditions in patients. Throughout the years, ultrasounds have been used as a passive recording modality where the backscattered echo arising from the interaction of the sound waves with the acoustic properties of the biological tissues helps to identify them. Apart from a wide range of therapeutic applications, the acoustic beam has not yet been explored to actuate within the biological environment in an active way. In this paper we present an implantable electronic device to be actuated remotely by ultrasounds with capabilities for measuring several physiological parameters of tissues: pH, temperature, electrolyte concentration and biopotentials. The small factory form device (with no attached batteries) harvests energy from the incoming ultrasound waves and uses it to power the embedded electronics. It operates from voltage levels as low as 0.8 V and consuming a total current of 60 μA (or an average power consumption of 84 μW) in the active mode when deployed at a distance of 3 cm from the active source of ultrasounds in vitro, excited by a sinusoid at 400 kHz with power density of 20 mWcm-2. The sensor can be actuated by a specifically-designed readout device (as detailed in this paper) or using the traditional medical probes for ultrasound imaging. The actual device can present an alternative to surpass the limitations of inductive and RF-powered sensors implanted in soft tissues.","PeriodicalId":205735,"journal":{"name":"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2016.7516281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Ultrasound imaging is a proven diagnostic tool to assess a myriad of physiological and pathological conditions in patients. Throughout the years, ultrasounds have been used as a passive recording modality where the backscattered echo arising from the interaction of the sound waves with the acoustic properties of the biological tissues helps to identify them. Apart from a wide range of therapeutic applications, the acoustic beam has not yet been explored to actuate within the biological environment in an active way. In this paper we present an implantable electronic device to be actuated remotely by ultrasounds with capabilities for measuring several physiological parameters of tissues: pH, temperature, electrolyte concentration and biopotentials. The small factory form device (with no attached batteries) harvests energy from the incoming ultrasound waves and uses it to power the embedded electronics. It operates from voltage levels as low as 0.8 V and consuming a total current of 60 μA (or an average power consumption of 84 μW) in the active mode when deployed at a distance of 3 cm from the active source of ultrasounds in vitro, excited by a sinusoid at 400 kHz with power density of 20 mWcm-2. The sensor can be actuated by a specifically-designed readout device (as detailed in this paper) or using the traditional medical probes for ultrasound imaging. The actual device can present an alternative to surpass the limitations of inductive and RF-powered sensors implanted in soft tissues.