Patient-Specific Seizure Detection from Intra-cranial EEG Using High Dimensional Clustering

Haimonti Dutta, D. Waltz, Karthik M. Ramasamy, Philip Gross, Ansaf Salleb-Aouissi, H. Diab, Manoj Pooleery, C. Schevon, R. Emerson
{"title":"Patient-Specific Seizure Detection from Intra-cranial EEG Using High Dimensional Clustering","authors":"Haimonti Dutta, D. Waltz, Karthik M. Ramasamy, Philip Gross, Ansaf Salleb-Aouissi, H. Diab, Manoj Pooleery, C. Schevon, R. Emerson","doi":"10.1109/ICMLA.2010.119","DOIUrl":null,"url":null,"abstract":"Automatic seizure detection is becoming popular in modern epilepsy monitoring units since it assists diagnostic monitoring and reduces manual review of large volumes of EEG recordings. In this paper, we describe the application of machine learning algorithms for building patient-specific seizure detectors on multiple frequency bands of intra-cranial electroencephalogram (iEEG) recorded by a dense Micro-Electrode Array (MEA). The MEA is capable of recording at a very high sampling rate (30 KHz) producing an avalanche of time series data. We explore subsets of this data to build seizure detectors – we discuss several methods for extracting univariate and bivariate features from the channels and study the effectiveness of using high dimensional clustering algorithms such as K-means and Subspace clustering for constructing the model. Future work involves design of more robust seizure detectors using other features and non-parametric clustering techniques, detection of artifacts and understanding the generalization properties of the models.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Automatic seizure detection is becoming popular in modern epilepsy monitoring units since it assists diagnostic monitoring and reduces manual review of large volumes of EEG recordings. In this paper, we describe the application of machine learning algorithms for building patient-specific seizure detectors on multiple frequency bands of intra-cranial electroencephalogram (iEEG) recorded by a dense Micro-Electrode Array (MEA). The MEA is capable of recording at a very high sampling rate (30 KHz) producing an avalanche of time series data. We explore subsets of this data to build seizure detectors – we discuss several methods for extracting univariate and bivariate features from the channels and study the effectiveness of using high dimensional clustering algorithms such as K-means and Subspace clustering for constructing the model. Future work involves design of more robust seizure detectors using other features and non-parametric clustering techniques, detection of artifacts and understanding the generalization properties of the models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于高维聚类的颅内脑电图患者特异性癫痫检测
自动发作检测在现代癫痫监测装置中越来越流行,因为它有助于诊断监测,减少了大量脑电图记录的人工审查。在本文中,我们描述了机器学习算法在密集微电极阵列(MEA)记录的颅内脑电图(iEEG)的多个频段上构建患者特定癫痫检测器的应用。MEA能够以非常高的采样率(30 KHz)记录,产生雪崩的时间序列数据。我们探索这些数据的子集来构建癫痫检测器-我们讨论了几种从通道中提取单变量和双变量特征的方法,并研究了使用高维聚类算法(如K-means和子空间聚类)构建模型的有效性。未来的工作包括使用其他特征和非参数聚类技术设计更健壮的癫痫检测器,检测工件和理解模型的泛化属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative Analysis of DNA Microarray Data through the Use of Feature Selection Techniques Learning from Multiple Related Data Streams with Asynchronous Flowing Speeds Bayesian Inferences and Forecasting in Spatial Time Series Models A Framework for Comprehensive Electronic QA in Radiation Therapy Model-Based Co-clustering for Continuous Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1