Multi-level context-dependent acoustic modeling for automatic speech recognition

Hung-An Chang, James R. Glass
{"title":"Multi-level context-dependent acoustic modeling for automatic speech recognition","authors":"Hung-An Chang, James R. Glass","doi":"10.1109/ASRU.2011.6163911","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a multi-level, context-dependent acoustic modeling framework for automatic speech recognition. For each context-dependent unit considered by the recognizer, we construct a set of classifiers that target different amounts of contextual resolution, and then combine them for scoring. Since information from multiple levels of contexts is appropriately combined, the proposed modeling framework provides reasonable scores for units with few or no training examples, while maintaining an ability to distinguish between different context-dependent units. On a large vocabulary lecture transcription task, the proposed modeling framework outperforms a traditional clustering-based context-dependent acoustic model by 3.5% (11.4% relative) in terms of word error rate.","PeriodicalId":338241,"journal":{"name":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2011.6163911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we propose a multi-level, context-dependent acoustic modeling framework for automatic speech recognition. For each context-dependent unit considered by the recognizer, we construct a set of classifiers that target different amounts of contextual resolution, and then combine them for scoring. Since information from multiple levels of contexts is appropriately combined, the proposed modeling framework provides reasonable scores for units with few or no training examples, while maintaining an ability to distinguish between different context-dependent units. On a large vocabulary lecture transcription task, the proposed modeling framework outperforms a traditional clustering-based context-dependent acoustic model by 3.5% (11.4% relative) in terms of word error rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于自动语音识别的多级上下文相关声学建模
在本文中,我们提出了一个用于自动语音识别的多层次、上下文相关的声学建模框架。对于识别器考虑的每个上下文相关单元,我们构建了一组针对不同上下文分辨率的分类器,然后将它们组合起来进行评分。由于来自多个上下文级别的信息被适当地组合在一起,因此所提出的建模框架为只有很少或没有训练示例的单元提供了合理的分数,同时保持了区分不同上下文相关单元的能力。在一个大词汇量的演讲转录任务中,所提出的建模框架在单词错误率方面比传统的基于聚类的上下文相关声学模型高出3.5%(相对11.4%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Applying feature bagging for more accurate and robust automated speaking assessment Towards choosing better primes for spoken dialog systems Accent level adjustment in bilingual Thai-English text-to-speech synthesis Fast speaker diarization using a high-level scripting language Evaluating prosodic features for automated scoring of non-native read speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1