{"title":"Fast marching based superpixels","authors":"Kaiwen Chang, B. Figliuzzi","doi":"10.1515/mathm-2020-0105","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we present a fast-marching based algorithm for generating superpixel (FMS) partitions of images. The idea behind the algorithm is to draw an analogy between waves propagating in a heterogeneous medium and regions growing on an image at a rate depending on the local color and texture. The FMS algorithm is evaluated on the Berkeley Segmentation Dataset 500. It yields results in terms of boundary adherence that are slightly better than the ones obtained with similar approaches including the Simple Linear Iterative Clustering, the Eikonal-based region growing for efficient clustering and the Iterative Spanning Forest framework for superpixel segmentation algorithms. An interesting feature of the proposed algorithm is that it can take into account texture information to compute the superpixel partition. We illustrate the interest of adding texture information on a specific set of images obtained by recombining textures patches extracted from images representing stripes, originally constructed by Giraud et al. [20]. On this dataset, our approach works significantly better than color based superpixel algorithms.","PeriodicalId":244328,"journal":{"name":"Mathematical Morphology - Theory and Applications","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Morphology - Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mathm-2020-0105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract In this article, we present a fast-marching based algorithm for generating superpixel (FMS) partitions of images. The idea behind the algorithm is to draw an analogy between waves propagating in a heterogeneous medium and regions growing on an image at a rate depending on the local color and texture. The FMS algorithm is evaluated on the Berkeley Segmentation Dataset 500. It yields results in terms of boundary adherence that are slightly better than the ones obtained with similar approaches including the Simple Linear Iterative Clustering, the Eikonal-based region growing for efficient clustering and the Iterative Spanning Forest framework for superpixel segmentation algorithms. An interesting feature of the proposed algorithm is that it can take into account texture information to compute the superpixel partition. We illustrate the interest of adding texture information on a specific set of images obtained by recombining textures patches extracted from images representing stripes, originally constructed by Giraud et al. [20]. On this dataset, our approach works significantly better than color based superpixel algorithms.