Stability enhancement through reinforcement learning: Load frequency control case study

Sara Eftekharnejad, A. Feliachi
{"title":"Stability enhancement through reinforcement learning: Load frequency control case study","authors":"Sara Eftekharnejad, A. Feliachi","doi":"10.1109/IREP.2007.4410552","DOIUrl":null,"url":null,"abstract":"A multi-agent based control architecture using reinforcement learning is proposed to enhance power system stability. It consists of a layer of local agents and a global agent that coordinates the behavior of the local agents. Load frequency control is chosen as a case study to demonstrate the viability of the proposed concept. Simulation results illustrate the effectiveness of this controller as an online automatic generation controller (AGC) for a two area system, with and without generation rate constraints (GRC).","PeriodicalId":214545,"journal":{"name":"2007 iREP Symposium - Bulk Power System Dynamics and Control - VII. Revitalizing Operational Reliability","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 iREP Symposium - Bulk Power System Dynamics and Control - VII. Revitalizing Operational Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IREP.2007.4410552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

A multi-agent based control architecture using reinforcement learning is proposed to enhance power system stability. It consists of a layer of local agents and a global agent that coordinates the behavior of the local agents. Load frequency control is chosen as a case study to demonstrate the viability of the proposed concept. Simulation results illustrate the effectiveness of this controller as an online automatic generation controller (AGC) for a two area system, with and without generation rate constraints (GRC).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过强化学习增强稳定性:负荷频率控制案例研究
为了提高电力系统的稳定性,提出了一种基于多智能体的强化学习控制体系结构。它由一层本地代理和一个全局代理组成,全局代理负责协调本地代理的行为。选择负载频率控制作为案例研究来证明所提出概念的可行性。仿真结果验证了该控制器作为两区系统在线自动生成控制器(AGC)的有效性,该控制器具有和不具有生成速率约束(GRC)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Risk assessment approach for re-regulated distribution systems The economic aspects of operational reliability in electricity markets Optimal Energy Flow of integrated energy systems with hydrogen economy considerations A hybrid on-line slow voltage control scheme for large power systems Satellite based communication network for large scale power system applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1