An electroencephalogram analysis method to detect preference using gray association degree

S. Ito, Momoyo Ito, M. Fukumi
{"title":"An electroencephalogram analysis method to detect preference using gray association degree","authors":"S. Ito, Momoyo Ito, M. Fukumi","doi":"10.23919/ELINFOCOM.2018.8330622","DOIUrl":null,"url":null,"abstract":"This paper introduces an electroencephalogram (EEG) analysis method to detect human preference. The proposed method consists of three phases; EEG recording, EEG feature extraction and preference detection. In EEG recording, we employ the simple electroencephalograph. The measurement position to record the EEG is left frontal lobe (FP1). The gray association degree is used to extract the EEG feature. The support vector machine is used to detect human preference on sounds listened to. In order to show the effectiveness of the proposed method, we conduct the experiments. In the experimental results, the mean of the accuracy rate of the favorite sound detection was higher than 88%.","PeriodicalId":413646,"journal":{"name":"2018 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ELINFOCOM.2018.8330622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper introduces an electroencephalogram (EEG) analysis method to detect human preference. The proposed method consists of three phases; EEG recording, EEG feature extraction and preference detection. In EEG recording, we employ the simple electroencephalograph. The measurement position to record the EEG is left frontal lobe (FP1). The gray association degree is used to extract the EEG feature. The support vector machine is used to detect human preference on sounds listened to. In order to show the effectiveness of the proposed method, we conduct the experiments. In the experimental results, the mean of the accuracy rate of the favorite sound detection was higher than 88%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种利用灰色关联度检测偏好的脑电图分析方法
本文介绍了一种检测人类偏好的脑电图分析方法。该方法分为三个阶段;脑电记录,脑电特征提取和偏好检测。在脑电图记录中,我们采用简易脑电图仪。记录EEG的测量位置为左额叶(FP1)。利用灰度关联度提取脑电特征。支持向量机用于检测人们对所听声音的偏好。为了证明该方法的有效性,我们进行了实验。在实验结果中,最喜欢的声音检测准确率的平均值高于88%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sensing voltage compensation circuit for low-power dram bit-line sense amplifier Coordinate-RNN for error correction on numerical weather prediction Pulsed PMOS sense amplifier for high speed single-ended SRAM An estimation of road surface conditions using participatory sensing Cycle-accurate full system simulation for CPU+GPU+HBM computing platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1