Multiplexed Principal Modes in Few-Mode Fiber Links With Limited Delayed Feedback

Anju Radhakrishnan, K. Appaiah
{"title":"Multiplexed Principal Modes in Few-Mode Fiber Links With Limited Delayed Feedback","authors":"Anju Radhakrishnan, K. Appaiah","doi":"10.1109/NCC55593.2022.9806787","DOIUrl":null,"url":null,"abstract":"The use of channel state information (CSI) at the transmitter significantly enhances the performance of wireless communication systems. However, the requirement of CSI feed-back increases the burden on the reverse link, especially in links that employ multiple-input multiple-output (MIMO), where CSI takes the form of scalar parameters of the Principal Modes (PMs). Typical deployments use quantization and feedback of CSI at certain wavelengths of the dense wavelength division multiplexing (DWDM) grid, with interpolation to fill in missing CSI at the transmitter. Past work has used the Linde-Buzo-Gray algorithm (LBG) algorithm for quantization and interpolation of CSI. This paper includes the parameterization of the PMs into scalar parameters that are subjected to quantization and interpolation. we exploit another degree of flexibility by the ordering of the singular vectors of unitary PMs. This results in significant savings over the previous approaches to quantize PMs without any loss in performance. Further, simulations reveal that the proposed Flag manifold quantization and interpolation effectively enhance achievable rates with limited complexity.","PeriodicalId":403870,"journal":{"name":"2022 National Conference on Communications (NCC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC55593.2022.9806787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of channel state information (CSI) at the transmitter significantly enhances the performance of wireless communication systems. However, the requirement of CSI feed-back increases the burden on the reverse link, especially in links that employ multiple-input multiple-output (MIMO), where CSI takes the form of scalar parameters of the Principal Modes (PMs). Typical deployments use quantization and feedback of CSI at certain wavelengths of the dense wavelength division multiplexing (DWDM) grid, with interpolation to fill in missing CSI at the transmitter. Past work has used the Linde-Buzo-Gray algorithm (LBG) algorithm for quantization and interpolation of CSI. This paper includes the parameterization of the PMs into scalar parameters that are subjected to quantization and interpolation. we exploit another degree of flexibility by the ordering of the singular vectors of unitary PMs. This results in significant savings over the previous approaches to quantize PMs without any loss in performance. Further, simulations reveal that the proposed Flag manifold quantization and interpolation effectively enhance achievable rates with limited complexity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有有限延迟反馈的少模光纤链路中的多路主模
在发送端使用信道状态信息(CSI)可以显著提高无线通信系统的性能。然而,CSI反馈的要求增加了反向链路的负担,特别是在采用多输入多输出(MIMO)的链路中,CSI采用主模量(pm)的标量参数形式。典型的部署是在密集波分复用(DWDM)网格的特定波长处对CSI进行量化和反馈,并用插值来填补发射机处缺失的CSI。以往的工作是使用Linde-Buzo-Gray算法(LBG)对CSI进行量化和插值。本文将质点参数化为可量化和插值的标量参数。我们通过对酉pm的奇异向量进行排序,利用了另一种程度的灵活性。与之前量化pm的方法相比,这大大节省了成本,而不会造成任何性能损失。此外,仿真结果表明,所提出的Flag流形量化和插值在有限的复杂度下有效地提高了可达率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CoRAL: Coordinated Resource Allocation for Intercell D2D Communication in Cellular Networks Modelling the Impact of Multiple Pro-inflammatory Cytokines Using Molecular Communication STPGANsFusion: Structure and Texture Preserving Generative Adversarial Networks for Multi-modal Medical Image Fusion Intelligent On/Off Switching of mmRSUs in Urban Vehicular Networks: A Deep Q-Learning Approach Classification of Auscultation Sounds into Objective Spirometry Findings using MVMD and 3D CNN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1