Multicategory cancer classification from gene expression data by multiclass NPPC ensemble

S. Ghorai, A. Mukherjee, S. Sengupta, P. Dutta
{"title":"Multicategory cancer classification from gene expression data by multiclass NPPC ensemble","authors":"S. Ghorai, A. Mukherjee, S. Sengupta, P. Dutta","doi":"10.1109/ICSMB.2010.5735343","DOIUrl":null,"url":null,"abstract":"The discovery of DNA microarray technologies have given immense opportunity to make gene expression profiles for different cancer types. Besides binary classification such as normal versus tumor samples the discrimination of multiple tumor types is also important. In this work, we have first extended the recently developed binary nonparallel plane proximal classifier (NPPC) to multiclass NPPC by decomposition techniques. The multiclass NPPC is then used in a computer aided diagnosis framework to classify multicategory cancer from gene expression data by selecting very few genes by using mutual information criterion. The idea of binary NPPC ensemble is extended to form multiclass NPPC ensemble. Besides usual majority voting method, we have introduced minimum average proximity based decision combiner for multiclass NPPC ensemble. The effectiveness of the proposed method are demonstrated on four benchmark microarray data sets and compared with support vector machine (SVM) classifier in a similar framework.","PeriodicalId":297136,"journal":{"name":"2010 International Conference on Systems in Medicine and Biology","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Systems in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSMB.2010.5735343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

The discovery of DNA microarray technologies have given immense opportunity to make gene expression profiles for different cancer types. Besides binary classification such as normal versus tumor samples the discrimination of multiple tumor types is also important. In this work, we have first extended the recently developed binary nonparallel plane proximal classifier (NPPC) to multiclass NPPC by decomposition techniques. The multiclass NPPC is then used in a computer aided diagnosis framework to classify multicategory cancer from gene expression data by selecting very few genes by using mutual information criterion. The idea of binary NPPC ensemble is extended to form multiclass NPPC ensemble. Besides usual majority voting method, we have introduced minimum average proximity based decision combiner for multiclass NPPC ensemble. The effectiveness of the proposed method are demonstrated on four benchmark microarray data sets and compared with support vector machine (SVM) classifier in a similar framework.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多类NPPC集合的基因表达数据的多类型癌症分类
DNA微阵列技术的发现为不同癌症类型的基因表达谱提供了巨大的机会。除了正常与肿瘤样本的二元分类外,多种肿瘤类型的区分也很重要。在这项工作中,我们首先通过分解技术将最近发展起来的二元非平行平面近端分类器(NPPC)扩展到多类NPPC。然后在计算机辅助诊断框架中使用多类NPPC,通过使用互信息标准选择很少的基因,从基因表达数据中对多类癌症进行分类。将二元NPPC系综的思想扩展为多类NPPC系综。除了通常的多数投票方法外,我们还引入了基于最小平均接近度的多类NPPC集成决策组合。在四个基准微阵列数据集上验证了该方法的有效性,并在类似框架下与支持向量机(SVM)分类器进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Alpha-amylase activity of tannin isolated from Terminalia chebula Performance analysis of LDA, QDA and KNN algorithms in left-right limb movement classification from EEG data Implementation of Katsevich algorithm for helical cone-beam computed tomography using CORDIC Color-image processing: An introduction with some medical application-examples Knee joint cartilage visualization and quantification in normal and osteoarthritis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1