Combinatorial Multigrid: Advanced Preconditioners For Ill-Conditioned Linear Systems

M. H. Langston, M. Harris, Pierre-David Létourneau, R. Lethin, J. Ezick
{"title":"Combinatorial Multigrid: Advanced Preconditioners For Ill-Conditioned Linear Systems","authors":"M. H. Langston, M. Harris, Pierre-David Létourneau, R. Lethin, J. Ezick","doi":"10.1109/HPEC.2019.8916446","DOIUrl":null,"url":null,"abstract":"The Combinatorial Multigrid (CMG) technique is a practical and adaptable solver and combinatorial preconditioner for solving certain classes of large, sparse systems of linear equations. CMG is similar to Algebraic Multigrid (AMG) but replaces large groupings of fine-level variables with a single coarse-level one, resulting in simple and fast interpolation schemes. These schemes further provide control over the refinement strategies at different levels of the solver hierarchy depending on the condition number of the system being solved [1]. While many pre-existing solvers may be able to solve large, sparse systems with relatively low complexity, inversion may require O(n2) space; whereas, if we know that a linear operator has $\\tilde{n}=O(n)$ nonzero elements, we desire to use O(n) space in order to reduce communication as much as possible. Being able to invert sparse linear systems of equations, asymptotically as fast as the values can be read from memory, has been identified by the Defense Advanced Research Projects Agency (DARPA) and the Department of Energy (DOE) as increasingly necessary for scalable solvers and energy-efficient algorithms [2], [3] in scientific computing. Further, as industry and government agencies move towards exascale, fast solvers and communication-avoidance will be more necessary [4], [5]. In this paper, we present an optimized implementation of the Combinatorial Multigrid in C using Petsc and analyze the solution of various systems using the CMG approach as a preconditioner on much larger problems than have been presented thus far. We compare the number of iterations, setup times and solution times against other popular preconditioners for such systems, including Incomplete Cholesky and a Multigrid approach in Petsc against common problems, further exhibiting superior performance by the CMG.1 2","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The Combinatorial Multigrid (CMG) technique is a practical and adaptable solver and combinatorial preconditioner for solving certain classes of large, sparse systems of linear equations. CMG is similar to Algebraic Multigrid (AMG) but replaces large groupings of fine-level variables with a single coarse-level one, resulting in simple and fast interpolation schemes. These schemes further provide control over the refinement strategies at different levels of the solver hierarchy depending on the condition number of the system being solved [1]. While many pre-existing solvers may be able to solve large, sparse systems with relatively low complexity, inversion may require O(n2) space; whereas, if we know that a linear operator has $\tilde{n}=O(n)$ nonzero elements, we desire to use O(n) space in order to reduce communication as much as possible. Being able to invert sparse linear systems of equations, asymptotically as fast as the values can be read from memory, has been identified by the Defense Advanced Research Projects Agency (DARPA) and the Department of Energy (DOE) as increasingly necessary for scalable solvers and energy-efficient algorithms [2], [3] in scientific computing. Further, as industry and government agencies move towards exascale, fast solvers and communication-avoidance will be more necessary [4], [5]. In this paper, we present an optimized implementation of the Combinatorial Multigrid in C using Petsc and analyze the solution of various systems using the CMG approach as a preconditioner on much larger problems than have been presented thus far. We compare the number of iterations, setup times and solution times against other popular preconditioners for such systems, including Incomplete Cholesky and a Multigrid approach in Petsc against common problems, further exhibiting superior performance by the CMG.1 2
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
组合多重网格:病态线性系统的高级预调节器
组合多重网格(CMG)技术是求解某类大型、稀疏线性方程组的一种实用且适应性强的求解器和组合预条件。CMG类似于代数多网格(algeaic Multigrid, AMG),但用一个粗级变量代替了大组细级变量,从而实现了简单快速的插值方案。这些方案进一步提供了对求解器层次结构中不同层次的细化策略的控制,这取决于被求解系统的条件数[1]。虽然许多已有的求解器可以求解复杂度相对较低的大型稀疏系统,但反演可能需要O(n2)空间;然而,如果我们知道一个线性算子有$\tilde{n}=O(n)$非零元素,我们希望使用O(n)空间,以便尽可能地减少通信。美国国防部高级研究计划局(DARPA)和美国能源部(DOE)认为,在科学计算中,对于可扩展求解器和节能算法[2],[3]来说,能够反演稀疏线性方程组,且速度与从存储器中读取值的速度一样快,这一点越来越有必要。此外,随着工业和政府机构向百亿亿级发展,快速求解器和通信避免将更加必要[4],[5]。在本文中,我们使用Petsc在C中提出了组合多网格的优化实现,并使用CMG方法作为迄今为止提出的更大问题的前置条件,分析了各种系统的解决方案。我们将迭代次数、设置时间和解决时间与此类系统的其他流行前置条件(包括针对常见问题的不完全Cholesky和Petsc中的Multigrid方法)进行了比较,进一步展示了CMG.1的优越性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[HPEC 2019 Copyright notice] Concurrent Katz Centrality for Streaming Graphs Cyber Baselining: Statistical properties of cyber time series and the search for stability Emerging Applications of 3D Integration and Approximate Computing in High-Performance Computing Systems: Unique Security Vulnerabilities Target-based Resource Allocation for Deep Learning Applications in a Multi-tenancy System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1