Semi-supervised learning based activity recognition from sensor data

Ryunosuke Matsushige, K. Kakusho, T. Okadome
{"title":"Semi-supervised learning based activity recognition from sensor data","authors":"Ryunosuke Matsushige, K. Kakusho, T. Okadome","doi":"10.1109/GCCE.2015.7398506","DOIUrl":null,"url":null,"abstract":"The semi-supervised kernel logistic regression (SSKLR), developed for the classification of human behaviors from sensor data, takes the form of a linear combination of kernel functions associated with each of the labeled and unlabeled data from the training set. Its model parameters are determined, using an EM algorithm, by maximizing the expectation of the joint distribution over the posterior for selected unlabeled data that are in a neighborhood of one of labeled data. Tests for two types of human behaviors such as (1) \"walk,\" and \"skip,\" and (2) \"drink a cup of tea,\" and \"wash a cup\" reveal that, using acceleration data as input, SSKLR classifies the behaviors better than semi-supervised Gaussian mixture and semi-supervised support vector machine models.","PeriodicalId":363743,"journal":{"name":"2015 IEEE 4th Global Conference on Consumer Electronics (GCCE)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 4th Global Conference on Consumer Electronics (GCCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCCE.2015.7398506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The semi-supervised kernel logistic regression (SSKLR), developed for the classification of human behaviors from sensor data, takes the form of a linear combination of kernel functions associated with each of the labeled and unlabeled data from the training set. Its model parameters are determined, using an EM algorithm, by maximizing the expectation of the joint distribution over the posterior for selected unlabeled data that are in a neighborhood of one of labeled data. Tests for two types of human behaviors such as (1) "walk," and "skip," and (2) "drink a cup of tea," and "wash a cup" reveal that, using acceleration data as input, SSKLR classifies the behaviors better than semi-supervised Gaussian mixture and semi-supervised support vector machine models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于传感器数据的半监督学习活动识别
为从传感器数据中对人类行为进行分类而开发的半监督核逻辑回归(SSKLR)采用与训练集中的每个标记和未标记数据相关的核函数的线性组合的形式。它的模型参数是通过EM算法确定的,通过最大化后验联合分布的期望,选择未标记的数据,这些数据位于一个标记数据的附近。对两种人类行为的测试,如(1)“走”和“跳”,以及(2)“喝一杯茶”和“洗一杯”表明,使用加速数据作为输入,SSKLR比半监督高斯混合和半监督支持向量机模型更好地分类行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An efficient data loading mechanism for list-style UI with content separation and parallel processing in mobile systems Extension with intelligent agents for the spoken dialogue system for smartphones Story creation approach for sensor network application development Block-based SRAM architecture and thermal-aware memory mappings for three-dimensional channel decoding systems On an efficient masking system using human head tracking parametric speaker system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1