Joint reflection and diving FWI using graph-space optimal transport and structure-guided smoothing on benchmark data

G. Provenzano, L. Métivier, R. Brossier
{"title":"Joint reflection and diving FWI using graph-space optimal transport and structure-guided smoothing on benchmark data","authors":"G. Provenzano, L. Métivier, R. Brossier","doi":"10.3997/2214-4609.202112779","DOIUrl":null,"url":null,"abstract":"Introduction Joint full waveform inversion (JFWI, Zhou et al., 2015) builds a P-wave velocity (Vp) macromodel exploiting simultaneously the information carried by diving waves and reflections (e.g. in RWI, Brossier et al., 2015), thus obtaining deep Vp-updates while enforcing the constraint on the shallow subsurface. Here we devise an acoustic JFWI+Impedance-WI (IpWI) strategy on the Chevron-2014 benchmark limited-offset reflection elastic dataset. JFWI is performed using a graph-space optimal transport objective function (GSOT, Métivier et al., 2019) and takes advantage from along-structure smoothing based on the impedance reflective image. We compare GSOT and L2 objective functions, and show the benefits of structure-oriented smoothing (Trinh et al., 2017). Finally, the JFWI solution is used as starting model of a multi-scale Vp-FWI, attaining an excellent match with the virtual log, a satisfactory focusing of the common image gathers (CIGs), and an improved stationarity of the source wavelet estimation.","PeriodicalId":143998,"journal":{"name":"82nd EAGE Annual Conference & Exhibition","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"82nd EAGE Annual Conference & Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.202112779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction Joint full waveform inversion (JFWI, Zhou et al., 2015) builds a P-wave velocity (Vp) macromodel exploiting simultaneously the information carried by diving waves and reflections (e.g. in RWI, Brossier et al., 2015), thus obtaining deep Vp-updates while enforcing the constraint on the shallow subsurface. Here we devise an acoustic JFWI+Impedance-WI (IpWI) strategy on the Chevron-2014 benchmark limited-offset reflection elastic dataset. JFWI is performed using a graph-space optimal transport objective function (GSOT, Métivier et al., 2019) and takes advantage from along-structure smoothing based on the impedance reflective image. We compare GSOT and L2 objective functions, and show the benefits of structure-oriented smoothing (Trinh et al., 2017). Finally, the JFWI solution is used as starting model of a multi-scale Vp-FWI, attaining an excellent match with the virtual log, a satisfactory focusing of the common image gathers (CIGs), and an improved stationarity of the source wavelet estimation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于图空间最优传输和基准数据结构导向平滑的联合反射和潜水FWI
联合全波形反演(JFWI, Zhou et al., 2015)建立了纵波速度(Vp)宏观模型,同时利用潜水波和反射(如RWI, Brossier et al., 2015)所携带的信息,从而在对浅层地下进行约束的同时获得深层Vp更新。在这里,我们设计了一种基于Chevron-2014基准有限偏移反射弹性数据集的声学JFWI+阻抗wi (IpWI)策略。JFWI使用图空间最优传输目标函数(GSOT, m等人,2019)执行,并利用基于阻抗反射图像的沿结构平滑。我们比较了GSOT和L2目标函数,并展示了面向结构的平滑的好处(Trinh et al., 2017)。最后,将JFWI解决方案作为多尺度Vp-FWI的起始模型,获得了与虚拟日志的良好匹配,公共图像集(CIGs)的令人满意的聚焦,并且提高了源小波估计的平稳性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GOMCRUST - The crustal-scale extension of the 2004 BP velocity model for long-offset OBN acquisition setting Prestack data attenuation compensation based on inversion Complex Near-surface Velocity Modeling via U-net Integrated high-resolution model building: a case study from the Sultanate of Oman Inverse Hessian estimation in least-squares migration using chains of operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1