Using Machine Learning to Decide When to Precondition Cylindrical Algebraic Decomposition with Groebner Bases

Zongyan Huang, M. England, J. Davenport, Lawrence Charles Paulson
{"title":"Using Machine Learning to Decide When to Precondition Cylindrical Algebraic Decomposition with Groebner Bases","authors":"Zongyan Huang, M. England, J. Davenport, Lawrence Charles Paulson","doi":"10.1109/SYNASC.2016.020","DOIUrl":null,"url":null,"abstract":"Cylindrical Algebraic Decomposition (CAD) is a key tool in computational algebraic geometry, particularly for quantifier elimination over real-closed fields. However, it can be expensive, with worst case complexity doubly exponential in the size of the input. Hence it is important to formulate the problem in the best manner for the CAD algorithm. One possibility is to precondition the input polynomials using Groebner Basis (GB) theory. Previous experiments have shown that while this can often be very beneficial to the CAD algorithm, for some problems it can significantly worsen the CAD performance. In the present paper we investigate whether machine learning, specifically a support vector machine (SVM), may be used to identify those CAD problems which benefit from GB preconditioning. We run experiments with over 1000 problems (many times larger than previous studies) and find that the machine learned choice does better than the human-made heuristic.","PeriodicalId":268635,"journal":{"name":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2016.020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Cylindrical Algebraic Decomposition (CAD) is a key tool in computational algebraic geometry, particularly for quantifier elimination over real-closed fields. However, it can be expensive, with worst case complexity doubly exponential in the size of the input. Hence it is important to formulate the problem in the best manner for the CAD algorithm. One possibility is to precondition the input polynomials using Groebner Basis (GB) theory. Previous experiments have shown that while this can often be very beneficial to the CAD algorithm, for some problems it can significantly worsen the CAD performance. In the present paper we investigate whether machine learning, specifically a support vector machine (SVM), may be used to identify those CAD problems which benefit from GB preconditioning. We run experiments with over 1000 problems (many times larger than previous studies) and find that the machine learned choice does better than the human-made heuristic.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Groebner基的柱面代数分解的机器学习预处理
圆柱代数分解(CAD)是计算代数几何中的一个重要工具,特别是用于实闭域上量词的消去。然而,它可能是昂贵的,在最坏的情况下,复杂度是输入大小的两倍指数。因此,在CAD算法中以最佳的方式表述问题是很重要的。一种可能性是使用格罗布纳基(Groebner Basis, GB)理论对输入多项式进行预设。先前的实验表明,虽然这通常对CAD算法非常有益,但对于某些问题,它可能会显着恶化CAD性能。在本文中,我们研究了机器学习,特别是支持向量机(SVM)是否可以用于识别那些受益于GB预处理的CAD问题。我们对1000多个问题进行了实验(比以前的研究大很多倍),发现机器学习的选择比人为的启发式更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hybrid CPU/GPU Approach for the Parallel Algebraic Recursive Multilevel Solver pARMS Continuation Semantics of a Language Inspired by Membrane Computing with Symport/Antiport Interactions Parallel Integer Polynomial Multiplication A Numerical Method for Analyzing the Stability of Bi-Parametric Biological Systems Comparing Different Term Weighting Schemas for Topic Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1