Admittance Control of the Ankle Mechanism in a Rotational Orthosis for Walking with Arm Swing

Zaile Mu, Juan Fang, Qiuju Zhang
{"title":"Admittance Control of the Ankle Mechanism in a Rotational Orthosis for Walking with Arm Swing","authors":"Zaile Mu, Juan Fang, Qiuju Zhang","doi":"10.1109/ICORR.2019.8779408","DOIUrl":null,"url":null,"abstract":"In order to provide an effective system for rehabilitation of walking, a new rotational orthosis for walking with arm swing, called ROWAS II, was developed. This study focused on development and implementation of admittance control of the ankle mechanism in the ROWAS II system for promoting active training. Firstly, the mechanical structure of the ankle mechanism is briefly introduced. Then the algorithms of the closed-loop position control and the admittance control for the ankle mechanism are described in detail. Four able-bodied participants were recruited to use the ankle mechanism running in passive and active modes. The experimental results showed that the ankle mechanism well tracked the target trajectory in passive mode. In active mode, the participants interacted with the ankle mechanism, and adjusted their ankle movement based on their active force. The ankle mechanism has the technical potential to meet the requirements of passive and active training in the ankle movement for patients in different post-stroke stages.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR.2019.8779408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In order to provide an effective system for rehabilitation of walking, a new rotational orthosis for walking with arm swing, called ROWAS II, was developed. This study focused on development and implementation of admittance control of the ankle mechanism in the ROWAS II system for promoting active training. Firstly, the mechanical structure of the ankle mechanism is briefly introduced. Then the algorithms of the closed-loop position control and the admittance control for the ankle mechanism are described in detail. Four able-bodied participants were recruited to use the ankle mechanism running in passive and active modes. The experimental results showed that the ankle mechanism well tracked the target trajectory in passive mode. In active mode, the participants interacted with the ankle mechanism, and adjusted their ankle movement based on their active force. The ankle mechanism has the technical potential to meet the requirements of passive and active training in the ankle movement for patients in different post-stroke stages.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
旋臂行走矫形器踝关节机构导纳控制
为了提供一个有效的步行康复系统,一种新的旋转矫形器与手臂摆动行走,称为ROWAS II,被开发出来。本研究的重点是开发和实施ROWAS II系统中踝关节机制的准入控制,以促进主动训练。首先,简要介绍了踝关节机构的机械结构。然后详细介绍了踝关节机构的闭环位置控制算法和导纳控制算法。招募了四名健全的参与者,使用踝关节机械装置在被动和主动模式下运行。实验结果表明,在被动模式下,踝关节机构能够很好地跟踪目标轨迹。在主动模式下,参与者与踝关节机构互动,并根据自己的主动力量调整踝关节的运动。该踝关节机构具有满足脑卒中后不同阶段患者踝关节运动被动和主动训练要求的技术潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predictive Simulation of Human Walking Augmented by a Powered Ankle Exoskeleton Pattern recognition and direct control home use of a multi-articulating hand prosthesis Feasibility study: Towards Estimation of Fatigue Level in Robot-Assisted Exercise for Cardiac Rehabilitation Performance Evaluation of EEG/EMG Fusion Methods for Motion Classification Texture Discrimination using a Soft Biomimetic Finger for Prosthetic Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1