MRI-guided Automated Delineation of Gross Tumor Volume for Nasopharyngeal Carcinoma using Deep Learning

Meiyan Yue, Z. Dai, Jiahui He, Yaoqin Xie, N. Zaki, Wenjian Qin
{"title":"MRI-guided Automated Delineation of Gross Tumor Volume for Nasopharyngeal Carcinoma using Deep Learning","authors":"Meiyan Yue, Z. Dai, Jiahui He, Yaoqin Xie, N. Zaki, Wenjian Qin","doi":"10.1109/CBMS55023.2022.00058","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel deep learning-based automatic delineation method of nasopharynx gross tumor volume (GTVnx) by combing computed tomography (CT) and magnetic resonance imaging (MRI) modalities. The purpose of this study is to explore whether MRI can provide additional information to improve the accuracy of delineation on CT. The proposed model can adaptively leverage the high contrast information of MRI into the automated delineation of GTVnx on CT in nasopharyngeal carcinoma (NPC) radiotherapy. In this study, the dataset collected from 192 patients with NPC was used to verify the performance of the proposed method. The average Dice Similarity Coefficient, 95% Hausdorff Distance and Average Symmetric Surface Distance of the segmentation results predicted by the proposed model are 0.7181, 9.6637mm, and 2.8014mm, respectively, which outperformed that of the single-modal and the concatenation-based multi-modal segmentation models.","PeriodicalId":218475,"journal":{"name":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS55023.2022.00058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a novel deep learning-based automatic delineation method of nasopharynx gross tumor volume (GTVnx) by combing computed tomography (CT) and magnetic resonance imaging (MRI) modalities. The purpose of this study is to explore whether MRI can provide additional information to improve the accuracy of delineation on CT. The proposed model can adaptively leverage the high contrast information of MRI into the automated delineation of GTVnx on CT in nasopharyngeal carcinoma (NPC) radiotherapy. In this study, the dataset collected from 192 patients with NPC was used to verify the performance of the proposed method. The average Dice Similarity Coefficient, 95% Hausdorff Distance and Average Symmetric Surface Distance of the segmentation results predicted by the proposed model are 0.7181, 9.6637mm, and 2.8014mm, respectively, which outperformed that of the single-modal and the concatenation-based multi-modal segmentation models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
mri引导下使用深度学习自动描绘鼻咽癌大体肿瘤体积
本文提出了一种结合计算机断层扫描(CT)和磁共振成像(MRI)的基于深度学习的鼻咽部总肿瘤体积(GTVnx)自动描绘方法。本研究的目的是探讨MRI是否可以提供额外的信息,以提高CT上圈定的准确性。该模型可以自适应地利用MRI的高对比度信息,在鼻咽癌放疗的CT上自动描绘GTVnx。在这项研究中,收集了192例鼻咽癌患者的数据集来验证所提出方法的性能。该模型预测的分割结果的平均骰子相似系数、95% Hausdorff距离和平均对称表面距离分别为0.7181、9.6637和2.8014mm,优于单模态和基于连接的多模态分割模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultrasonic Carotid Blood Flow Velocimetry Based on Deep Complex Neural Network Graph-based Regional Feature Enhancing for Abdominal Multi-Organ Segmentation in CT Exploiting AI to make insulin pens smart: injection site recognition and lipodystrophy detection Subgroup Discovery Analysis of Treatment Patterns in Lung Cancer Patients Estimating Predictive Uncertainty in Gastrointestinal Polyp Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1