{"title":"Investigation of the effect of thickness, taper ratio and aspect ratio on fin flutter velocity of a model rocket using response surface method","authors":"C. Tola, M. Nikbay","doi":"10.1109/RAST.2015.7208310","DOIUrl":null,"url":null,"abstract":"The main focus of this study is to examine the effect of thickness, taper ratio and aspect ratio on the fin flutter speed of a model rocket using response surface method. The most effective geometric parameter on fin flutter is determined. Coupled effects of these parameters are also analyzed within the content of the study. Additionally, a response surface representing the flutter velocity behavior is also determined. Modal analysis of different fin geometries having the same planform area have been performed using a FEA solver and the variation of the natural frequencies under the suitable boundary conditions are examined. Then, flutter analysis are performed using an aeroelastic solver based on the results of the modal analysis. As a result, taking the advantage of response surface method, the effect of thickness, taper ratio, aspect ratio and also the combined effects of these parameters on flutter speed is presented.","PeriodicalId":282476,"journal":{"name":"2015 7th International Conference on Recent Advances in Space Technologies (RAST)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference on Recent Advances in Space Technologies (RAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAST.2015.7208310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The main focus of this study is to examine the effect of thickness, taper ratio and aspect ratio on the fin flutter speed of a model rocket using response surface method. The most effective geometric parameter on fin flutter is determined. Coupled effects of these parameters are also analyzed within the content of the study. Additionally, a response surface representing the flutter velocity behavior is also determined. Modal analysis of different fin geometries having the same planform area have been performed using a FEA solver and the variation of the natural frequencies under the suitable boundary conditions are examined. Then, flutter analysis are performed using an aeroelastic solver based on the results of the modal analysis. As a result, taking the advantage of response surface method, the effect of thickness, taper ratio, aspect ratio and also the combined effects of these parameters on flutter speed is presented.