A Bayesian Semi-parametric Quantile Regression Approach for Joint Modeling of Longitudinal Ordinal and Continuous Responses

Omid Khazaei, M. Ganjali, M. Khazaei
{"title":"A Bayesian Semi-parametric Quantile Regression Approach for Joint Modeling of Longitudinal Ordinal and Continuous Responses","authors":"Omid Khazaei, M. Ganjali, M. Khazaei","doi":"10.19139/soic-2310-5070-1225","DOIUrl":null,"url":null,"abstract":"Quantile regression (QR) models are one of the methods for longitudinal data analysis. When responses seemto be skew and asymmetric due to outliers and heavy-tails, QR models may work suitably. This paper developes the semi-parametric quantile regression model for analyzing longitudinal continuous and ordinal mixed responses. The latent variable model and some threshold parameters are used to perform the quantile regression model’s ordinal part. The error of the latent variable model has Asymmetric Laplace (AL) distribution. The error term’s distribution is assumed to be AL distribution to model the continuous responses. The correlations of longitudinal responses belong to the same individual and those of mixed continuous and ordinal responses are considered using a random-effects approach. The regression spline is used to approximate the non-parametric part of the model. The parameter estimation procedure is performed under aBayesian paradigm using the Gibbs sampling method. A simulation study is performed to demonstrate the proposed model’s performance where the relative biases, standard errors, and root of MSEs of estimated parameters are decreased in the semi- parametric QR joint model when the number of subjects is increased. In our application, it was found that the mother’s age and her child’s age have significant effects on reading ability, and antisocial behavior depends on the child’s gender.","PeriodicalId":131002,"journal":{"name":"Statistics, Optimization & Information Computing","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, Optimization & Information Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-1225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantile regression (QR) models are one of the methods for longitudinal data analysis. When responses seemto be skew and asymmetric due to outliers and heavy-tails, QR models may work suitably. This paper developes the semi-parametric quantile regression model for analyzing longitudinal continuous and ordinal mixed responses. The latent variable model and some threshold parameters are used to perform the quantile regression model’s ordinal part. The error of the latent variable model has Asymmetric Laplace (AL) distribution. The error term’s distribution is assumed to be AL distribution to model the continuous responses. The correlations of longitudinal responses belong to the same individual and those of mixed continuous and ordinal responses are considered using a random-effects approach. The regression spline is used to approximate the non-parametric part of the model. The parameter estimation procedure is performed under aBayesian paradigm using the Gibbs sampling method. A simulation study is performed to demonstrate the proposed model’s performance where the relative biases, standard errors, and root of MSEs of estimated parameters are decreased in the semi- parametric QR joint model when the number of subjects is increased. In our application, it was found that the mother’s age and her child’s age have significant effects on reading ability, and antisocial behavior depends on the child’s gender.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纵向有序和连续响应联合建模的贝叶斯半参数分位数回归方法
分位数回归(QR)模型是纵向数据分析的方法之一。当响应由于异常值和重尾而显得偏斜和不对称时,QR模型可能适用。本文建立了分析纵向连续和有序混合响应的半参数分位数回归模型。使用潜变量模型和一些阈值参数来执行分位数回归模型的序数部分。潜变量模型的误差具有不对称拉普拉斯分布。假设误差项的分布为AL分布,以模拟连续响应。纵向响应的相关性属于同一个体,而混合连续和有序响应的相关性采用随机效应方法考虑。回归样条用于逼近模型的非参数部分。参数估计过程采用Gibbs抽样方法在aBayesian范式下进行。仿真研究表明,随着被试人数的增加,半参数QR联合模型中估计参数的相对偏差、标准误差和均方根均有所降低。在我们的应用中,我们发现母亲的年龄和孩子的年龄对阅读能力有显著的影响,反社会行为依赖于孩子的性别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-depth Analysis of von Mises Distribution Models: Understanding Theory, Applications, and Future Directions Bayesian and Non-Bayesian Estimation for The Parameter of Inverted Topp-Leone Distribution Based on Progressive Type I Censoring Comparative Evaluation of Imbalanced Data Management Techniques for Solving Classification Problems on Imbalanced Datasets An Algorithm for Solving Quadratic Programming Problems with an M-matrix An Effective Randomized Algorithm for Hyperspectral Image Feature Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1