A. Czutro, N. Houarche, P. Engelke, I. Polian, M. Comte, M. Renovell, B. Becker
{"title":"A Simulator of Small-Delay Faults Caused by Resistive-Open Defects","authors":"A. Czutro, N. Houarche, P. Engelke, I. Polian, M. Comte, M. Renovell, B. Becker","doi":"10.1109/ETS.2008.19","DOIUrl":null,"url":null,"abstract":"We present a simulator which determines the coverage of small-delay faults, i.e., delay faults with a size below one clock cycle, caused by resistive-open defects. These defects are likely to escape detection by stuck-at or transition fault patterns. For the first time, we couple the calculation of the critical size of a small-delay fault with the computation of the resistance range of the corresponding resistive-open defect for which this size is exceeded. By doing so, we are able to extend probabilistic fault coverage metrics initially developed for static resistive bridging faults to small-delay defects.","PeriodicalId":334529,"journal":{"name":"2008 13th European Test Symposium","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 13th European Test Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS.2008.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53
Abstract
We present a simulator which determines the coverage of small-delay faults, i.e., delay faults with a size below one clock cycle, caused by resistive-open defects. These defects are likely to escape detection by stuck-at or transition fault patterns. For the first time, we couple the calculation of the critical size of a small-delay fault with the computation of the resistance range of the corresponding resistive-open defect for which this size is exceeded. By doing so, we are able to extend probabilistic fault coverage metrics initially developed for static resistive bridging faults to small-delay defects.