Flexible Approach to Documenting and Presenting Multimedia Performances Using Motion Capture Data

R. Berka, Bohus Ziskal, Z. Trávníček
{"title":"Flexible Approach to Documenting and Presenting Multimedia Performances Using Motion Capture Data","authors":"R. Berka, Bohus Ziskal, Z. Trávníček","doi":"10.1109/ICDIM.2018.8847133","DOIUrl":null,"url":null,"abstract":"Multimedia performance documentation and preservation processes in digital domain mean a serious challenge as there is a necessity to store and search through many data types (e.g. video, audio, text, images, generic documents and motion data) while maintaining proper relations among all performance components. Memory institutions express the need for appropriate data models and tools that allow for preserving complexity of a work preserved together with all metadata already created in existing cataloguing systems. Additionally, the performance documentation should include a component describing actor’s movement on stage that can serve both for its reconstruction and presentation, moreover, its specific segments need to be identified and documented/linked separately. In this paper, we discuss existing models, suggest an adequate approach informed by existing data aggregation projects and standards, and evaluate methods for documenting motion including search and segmentation algorithms. Based on actual needs and using the data from Laterna Magica project aimed at national heritage preservation, we propose suitable data structures and an application for the complex documentation management and presentation intended both for professionals and the general public.","PeriodicalId":120884,"journal":{"name":"2018 Thirteenth International Conference on Digital Information Management (ICDIM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Thirteenth International Conference on Digital Information Management (ICDIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDIM.2018.8847133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multimedia performance documentation and preservation processes in digital domain mean a serious challenge as there is a necessity to store and search through many data types (e.g. video, audio, text, images, generic documents and motion data) while maintaining proper relations among all performance components. Memory institutions express the need for appropriate data models and tools that allow for preserving complexity of a work preserved together with all metadata already created in existing cataloguing systems. Additionally, the performance documentation should include a component describing actor’s movement on stage that can serve both for its reconstruction and presentation, moreover, its specific segments need to be identified and documented/linked separately. In this paper, we discuss existing models, suggest an adequate approach informed by existing data aggregation projects and standards, and evaluate methods for documenting motion including search and segmentation algorithms. Based on actual needs and using the data from Laterna Magica project aimed at national heritage preservation, we propose suitable data structures and an application for the complex documentation management and presentation intended both for professionals and the general public.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用动作捕捉数据记录和呈现多媒体表演的灵活方法
数字领域的多媒体性能文档和保存过程意味着一个严峻的挑战,因为需要存储和搜索许多数据类型(例如视频、音频、文本、图像、通用文档和运动数据),同时保持所有性能组件之间的适当关系。内存机构表达了对适当的数据模型和工具的需求,这些模型和工具允许保留工作的复杂性,同时保留现有编目系统中已创建的所有元数据。此外,表演文档应该包括描述演员在舞台上的动作的组件,这可以用于重建和呈现,此外,它的特定部分需要单独识别和记录/链接。在本文中,我们讨论了现有的模型,根据现有的数据聚合项目和标准提出了一种适当的方法,并评估了记录运动的方法,包括搜索和分割算法。根据实际需要,利用国家遗产保护项目的数据,我们提出了适合专业人员和公众的复杂文件管理和展示的数据结构和应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Attention Based Neural Architecture for Rumor Detection with Author Context Awareness Urdu Text Classification: A comparative study using machine learning techniques The Effect of Different Type of Information on Trust in Facebook Page Towards scalable standards for web content usability Ontology Coverage Tool and Document Browser for Learning Material Exploration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1