Initial Population Generation Method and its Effects on MOEA/D

Cheng Gong, Lie Meng Pang, H. Ishibuchi
{"title":"Initial Population Generation Method and its Effects on MOEA/D","authors":"Cheng Gong, Lie Meng Pang, H. Ishibuchi","doi":"10.1109/SSCI50451.2021.9660097","DOIUrl":null,"url":null,"abstract":"A good initial population generation method is of necessity to improve the performance of evolutionary multiobjective optimization (EMO) algorithms. However, until now only a few methods for generating an initial population have been proposed for EMO algorithms. In this paper, we propose a simple idea of generating an initial population for a popular decomposition-based algorithm, i.e., MOEA/D with the penalty-based boundary intersection (PBI) function, and demonstrate its effectiveness. The basic idea is to generate more initial solutions than the population size and to assign an appropriate solution to each weight vector. Firstly, we modify the initialization phase of MOEA/D through two different strategies based on this idea. Then, the modified MOEA/D algorithms are compared with the original MOEA/D on frequently-used many-objective test problems: DTLZ1, DTLZ3 and DTLZ4. Our experimental results clearly show that the proposed initial population generation method can significantly improve the performance of the original MOEA/D.","PeriodicalId":255763,"journal":{"name":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI50451.2021.9660097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A good initial population generation method is of necessity to improve the performance of evolutionary multiobjective optimization (EMO) algorithms. However, until now only a few methods for generating an initial population have been proposed for EMO algorithms. In this paper, we propose a simple idea of generating an initial population for a popular decomposition-based algorithm, i.e., MOEA/D with the penalty-based boundary intersection (PBI) function, and demonstrate its effectiveness. The basic idea is to generate more initial solutions than the population size and to assign an appropriate solution to each weight vector. Firstly, we modify the initialization phase of MOEA/D through two different strategies based on this idea. Then, the modified MOEA/D algorithms are compared with the original MOEA/D on frequently-used many-objective test problems: DTLZ1, DTLZ3 and DTLZ4. Our experimental results clearly show that the proposed initial population generation method can significantly improve the performance of the original MOEA/D.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
初始种群生成方法及其对MOEA/D的影响
一种良好的初始种群生成方法是提高进化多目标优化算法性能的必要条件。然而,到目前为止,仅提出了几种用于EMO算法生成初始种群的方法。在本文中,我们提出了一种简单的基于分解的算法生成初始种群的思想,即基于惩罚的边界交集(PBI)函数的MOEA/D算法,并证明了其有效性。其基本思想是生成比种群大小更多的初始解,并为每个权重向量分配一个适当的解。首先,基于这一思想,我们通过两种不同的策略修改了MOEA/D的初始化阶段。然后,在DTLZ1、DTLZ3、DTLZ4等常用多客观测试问题上,将改进后的MOEA/D算法与原MOEA/D算法进行比较。我们的实验结果清楚地表明,所提出的初始种群生成方法可以显著提高原始MOEA/D的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Voice Dialog System for Simulated Patient Robot and Detection of Interviewer Nodding Deep Learning Approaches to Remaining Useful Life Prediction: A Survey Evaluation of Graph Convolutions for Spatio-Temporal Predictions of EV-Charge Availability Balanced K-means using Quantum annealing A Study of Transfer Learning in a Generation Constructive Hyper-Heuristic for One Dimensional Bin Packing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1