Performance evaluation of image retrieval systems using shape feature based on wavelet transform

P. Desai, J. Pujari, Anita Kinnikar
{"title":"Performance evaluation of image retrieval systems using shape feature based on wavelet transform","authors":"P. Desai, J. Pujari, Anita Kinnikar","doi":"10.1109/CCIP.2016.7802876","DOIUrl":null,"url":null,"abstract":"Digital era has produced large volume of images which created many challenges in computer science field to store, retrieve and manage images efficiently and effectively. Many techniques and algorithms have been proposed by different researcher to implement Content Based Image Retrieval (CBIR) systems. This paper discusses performance of different CBIR systems implemented using combined features colour, texture and shape as a prominent feature based on wavelet transform. Choice of the feature extraction technique used in image retrieval determines performance of CBIR systems. In this paper evaluation of performance of three CBIR systems based on wavelet decomposition using threshold, wavelet decomposition using morphology operators and wavelet decomposition using Local Binary Patterns (LBP) is done. Also the performance of these methods is compared with the existing methods SIMPLIcity and FIRM. Average precision is used to compare the performance of the implemented systems. Results indicate that performance of CBIR systems using wavelet decomposition give better results than simplicity and FIRM, also wavelet decomposition with Local Binary Patterns (LBP) exhibit better retrieval efficiency compared to wavelet decomposition using threshold and morphological operators. Theses CBIR systems have been tested on bench mark Wang's image database. Precision versus Recall graphs for each system shows the performance of respective systems.","PeriodicalId":354589,"journal":{"name":"2016 Second International Conference on Cognitive Computing and Information Processing (CCIP)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Second International Conference on Cognitive Computing and Information Processing (CCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIP.2016.7802876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Digital era has produced large volume of images which created many challenges in computer science field to store, retrieve and manage images efficiently and effectively. Many techniques and algorithms have been proposed by different researcher to implement Content Based Image Retrieval (CBIR) systems. This paper discusses performance of different CBIR systems implemented using combined features colour, texture and shape as a prominent feature based on wavelet transform. Choice of the feature extraction technique used in image retrieval determines performance of CBIR systems. In this paper evaluation of performance of three CBIR systems based on wavelet decomposition using threshold, wavelet decomposition using morphology operators and wavelet decomposition using Local Binary Patterns (LBP) is done. Also the performance of these methods is compared with the existing methods SIMPLIcity and FIRM. Average precision is used to compare the performance of the implemented systems. Results indicate that performance of CBIR systems using wavelet decomposition give better results than simplicity and FIRM, also wavelet decomposition with Local Binary Patterns (LBP) exhibit better retrieval efficiency compared to wavelet decomposition using threshold and morphological operators. Theses CBIR systems have been tested on bench mark Wang's image database. Precision versus Recall graphs for each system shows the performance of respective systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于小波变换的形状特征图像检索系统性能评价
数字时代产生了大量的图像,这给计算机科学领域的图像存储、检索和管理带来了许多挑战。为了实现基于内容的图像检索(CBIR)系统,不同的研究者提出了许多技术和算法。本文讨论了基于小波变换的以颜色、纹理和形状为主要特征的组合特征实现的不同CBIR系统的性能。图像检索中特征提取技术的选择决定了CBIR系统的性能。本文对基于阈值的小波分解、基于形态学算子的小波分解和基于局部二值模式(LBP)的小波分解三种CBIR系统进行了性能评价。并与现有的simple和FIRM方法进行了性能比较。平均精度用于比较所实现系统的性能。结果表明,基于局部二值模式(LBP)的小波分解比基于阈值算子和形态算子的小波分解具有更好的检索效率。这些CBIR系统已经在王基准的图像数据库上进行了测试。每个系统的精确率与召回率图显示了各自系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hilbert Huang transform based speech recognition An Integrated curvature and Convex Hull based concave point detection in Histopathological images Study of Complex-valued Learning algorithms for Post-surgery survival prediction Optimized Radial Basis Function Neural Network model for wind power prediction Early detection of grapes diseases using machine learning and IoT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1