An evolutionary framework for automatic and guided discovery of algorithms

Ruchira Sasanka, K. Krommydas
{"title":"An evolutionary framework for automatic and guided discovery of algorithms","authors":"Ruchira Sasanka, K. Krommydas","doi":"10.1145/3387902.3394033","DOIUrl":null,"url":null,"abstract":"This paper presents Automatic Algorithm Discoverer (AAD), an evolutionary framework for synthesizing programs of high complexity. To guide evolution, prior evolutionary algorithms have depended on fitness (objective) functions that are often challenging to design. To make evolutionary progress, instead, AAD employs Problem Guided Evolution (PGE), which requires introduction of a group of problems. Solutions discovered for simpler problems are used to solve more complex problems in the group. PGE also enables new evolutionary strategies. The above enable AAD to discover algorithms of similar or higher complexity relative to the state-of-the-art. Specifically, AAD produces Python code for 29 array/vector problems ranging from min, max, reverse, to more challenging problems like sorting and matrix-vector multiplication.","PeriodicalId":155089,"journal":{"name":"Proceedings of the 17th ACM International Conference on Computing Frontiers","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3387902.3394033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents Automatic Algorithm Discoverer (AAD), an evolutionary framework for synthesizing programs of high complexity. To guide evolution, prior evolutionary algorithms have depended on fitness (objective) functions that are often challenging to design. To make evolutionary progress, instead, AAD employs Problem Guided Evolution (PGE), which requires introduction of a group of problems. Solutions discovered for simpler problems are used to solve more complex problems in the group. PGE also enables new evolutionary strategies. The above enable AAD to discover algorithms of similar or higher complexity relative to the state-of-the-art. Specifically, AAD produces Python code for 29 array/vector problems ranging from min, max, reverse, to more challenging problems like sorting and matrix-vector multiplication.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个用于自动和引导算法发现的进化框架
本文提出了一种用于综合高复杂性程序的进化框架——自动算法发现器(Automatic Algorithm Discoverer, AAD)。为了指导进化,以前的进化算法依赖于适应度(目标)函数,而这些函数的设计往往具有挑战性。为了实现进化,AAD采用了问题导向进化(PGE),这需要引入一组问题。为更简单的问题找到的解决方案被用于解决团队中更复杂的问题。PGE还支持新的进化策略。上述特性使AAD能够发现与最先进技术相似或更高复杂性的算法。具体来说,AAD为29个数组/向量问题生成Python代码,从最小、最大、反向到排序和矩阵向量乘法等更具挑战性的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A critical view on moving target defense and its analogies Deffe Management of container-based genetic algorithm workloads over cloud infrastructure Automaton-based methodology for implementing optimization constraints for quantum annealing An efficient object detection framework with modified dense connections for small objects optimizations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1