Robot Exploration based on Small Areas Priority Strategy

Chao Wei, Meng Xu, Ji-kai Wang, Zonghai Chen
{"title":"Robot Exploration based on Small Areas Priority Strategy","authors":"Chao Wei, Meng Xu, Ji-kai Wang, Zonghai Chen","doi":"10.1145/3529763.3529765","DOIUrl":null,"url":null,"abstract":"We present a method for robot exploration in complex three-dimensional environments. We prove that when facing multiple path branches, it is a necessary condition for optimal robot exploration to explore the branches connecting independent areas first, so we propose a local exploration strategy based on small areas priority. In order to realize this strategy, our method models lidar points and builds a prediction map covering more spatial information obtained by the sensor at the expense of accuracy. This method evaluates the potential explorable area of the unexplored space through ray-casting and the path tree, and decides which of the explorable path branches is the optimal choice in the local range. The method is compared to existing state-of-the-art methods in two corridor simulation scenes and three simulation scenes replicated from the real world. Experiment comparisons show that our method is more efficient in exploring space and closer to the global optimal trajectory.","PeriodicalId":123351,"journal":{"name":"Proceedings of the 3rd International Conference on Service Robotics Technologies","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Service Robotics Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3529763.3529765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a method for robot exploration in complex three-dimensional environments. We prove that when facing multiple path branches, it is a necessary condition for optimal robot exploration to explore the branches connecting independent areas first, so we propose a local exploration strategy based on small areas priority. In order to realize this strategy, our method models lidar points and builds a prediction map covering more spatial information obtained by the sensor at the expense of accuracy. This method evaluates the potential explorable area of the unexplored space through ray-casting and the path tree, and decides which of the explorable path branches is the optimal choice in the local range. The method is compared to existing state-of-the-art methods in two corridor simulation scenes and three simulation scenes replicated from the real world. Experiment comparisons show that our method is more efficient in exploring space and closer to the global optimal trajectory.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于小区域优先策略的机器人探索
提出了一种在复杂三维环境中进行机器人探索的方法。我们证明了当面对多个路径分支时,首先探索连接独立区域的分支是机器人进行最优探索的必要条件,因此我们提出了基于小区域优先的局部探索策略。为了实现这一策略,我们的方法以牺牲精度为代价,对激光雷达点进行建模,建立一个覆盖传感器获得的更多空间信息的预测图。该方法通过光线投射和路径树对未勘探空间的潜在可勘探面积进行评估,并确定在局部范围内可勘探路径分支的最优选择。在两个走廊模拟场景和三个从现实世界复制的模拟场景中,将该方法与现有最先进的方法进行了比较。实验结果表明,该方法具有更高的空间探索效率,更接近全局最优轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A High Telepresence Visual Perception Method Based on VR Technology, Depth Camera and Three Degree of Freedom Series Robot An Extension Research of Hamilton-Jacobi-Bellman Equation Research on simulation analysis technology of vehicle braking performance with different braking system configurations Robot Exploration based on Small Areas Priority Strategy Design of an upper limb exoskeleton to assist disabled individuals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1