Analysis of Adversarial Attacks on Support Vector Machine

Bharti Dakhale, K. Vipinkumar, Kalla Narotham, S. Pungati, Ankit A. Bhurane, A. Kothari
{"title":"Analysis of Adversarial Attacks on Support Vector Machine","authors":"Bharti Dakhale, K. Vipinkumar, Kalla Narotham, S. Pungati, Ankit A. Bhurane, A. Kothari","doi":"10.1109/PCEMS58491.2023.10136124","DOIUrl":null,"url":null,"abstract":"This paper investigates the use of Support Vector Machines (SVMs) in sleep stage classification and their sensitivity to adversarial assaults. It illustrates the power of machine learning (ML) for precise sleep stage classification, while also emphasizing the security risks posed by adversarial attacks on ML models. Using the secML module in Python, the study investigates defense mechanisms and the robustness of SVMs against adversarial attacks. The findings highlight the significance of taking security into account when designing and deploying ML models for safety-critical applications, such as autonomous driving, cyber-security systems, healthcare, etc.","PeriodicalId":330870,"journal":{"name":"2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCEMS58491.2023.10136124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the use of Support Vector Machines (SVMs) in sleep stage classification and their sensitivity to adversarial assaults. It illustrates the power of machine learning (ML) for precise sleep stage classification, while also emphasizing the security risks posed by adversarial attacks on ML models. Using the secML module in Python, the study investigates defense mechanisms and the robustness of SVMs against adversarial attacks. The findings highlight the significance of taking security into account when designing and deploying ML models for safety-critical applications, such as autonomous driving, cyber-security systems, healthcare, etc.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
支持向量机的对抗性攻击分析
本文研究了支持向量机(svm)在睡眠阶段分类中的应用及其对敌对攻击的敏感性。它说明了机器学习(ML)在精确睡眠阶段分类方面的强大功能,同时也强调了对ML模型的对抗性攻击所带来的安全风险。该研究使用Python中的secML模块,研究了支持向量机对对抗性攻击的防御机制和鲁棒性。研究结果强调了在为安全关键应用(如自动驾驶、网络安全系统、医疗保健等)设计和部署机器学习模型时考虑安全性的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interactive Zira Voice Assistant- A Personalized Desktop Application Gait-Face Based Human Recognition From Distant Video Survey on Diverse Image Inpainting using Diffusion Models Survey, Analysis and Association Rules derivation using Apriori Method for buying preference amongst kids of age-group 5 to 9 in India Implementing Chaos Based Optimisations on Neural Networks for Predictions of Distributed Denial-of-Service (DDoS) Attacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1