Accelerated Computation and Tracking of AC Optimal Power Flow Solutions Using GPUs

Youngdae Kim, Kibaek Kim
{"title":"Accelerated Computation and Tracking of AC Optimal Power Flow Solutions Using GPUs","authors":"Youngdae Kim, Kibaek Kim","doi":"10.1145/3547276.3548631","DOIUrl":null,"url":null,"abstract":"We present a scalable solution method based on an alternating direction method of multipliers and graphics processing units (GPUs) for rapidly computing and tracking a solution of alternating current optimal power flow (ACOPF) problem. Such a fast computation is particularly useful for mitigating the negative impact of frequent load and generation fluctuations on the optimal operation of a large electrical grid. To this end, we decompose a given ACOPF problem by grid components, resulting in a large number of small independent nonlinear nonconvex optimization subproblems. The computation time of these subproblems is significantly accelerated by employing the massive parallel computing capability of GPUs. In addition, the warm-start ability of our method leads to faster convergence, making the method particularly suitable for fast tracking of optimal solutions. We demonstrate the performance of our method on a 70,000 bus system by solving associated optimal power flow problems with both cold start and warm start.","PeriodicalId":255540,"journal":{"name":"Workshop Proceedings of the 51st International Conference on Parallel Processing","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop Proceedings of the 51st International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3547276.3548631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We present a scalable solution method based on an alternating direction method of multipliers and graphics processing units (GPUs) for rapidly computing and tracking a solution of alternating current optimal power flow (ACOPF) problem. Such a fast computation is particularly useful for mitigating the negative impact of frequent load and generation fluctuations on the optimal operation of a large electrical grid. To this end, we decompose a given ACOPF problem by grid components, resulting in a large number of small independent nonlinear nonconvex optimization subproblems. The computation time of these subproblems is significantly accelerated by employing the massive parallel computing capability of GPUs. In addition, the warm-start ability of our method leads to faster convergence, making the method particularly suitable for fast tracking of optimal solutions. We demonstrate the performance of our method on a 70,000 bus system by solving associated optimal power flow problems with both cold start and warm start.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于gpu的交流最优潮流加速计算与跟踪
提出了一种基于乘法器和图形处理单元(gpu)交替方向法的可扩展求解方法,用于快速计算和跟踪交流最优潮流(ACOPF)问题的解。这种快速计算对于减轻频繁负荷和发电波动对大型电网最佳运行的负面影响特别有用。为此,我们将给定的ACOPF问题按网格分量分解,得到大量独立的小的非线性非凸优化子问题。利用gpu的大规模并行计算能力,大大加快了这些子问题的计算速度。此外,我们的方法的热启动能力导致更快的收敛,使该方法特别适合于最优解的快速跟踪。通过解决冷启动和热启动相关的最优潮流问题,我们在一个70000总线系统上证明了该方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Software/Hardware Co-design Local Irregular Sparsity Method for Accelerating CNNs on FPGA A Fast and Secure AKA Protocol for B5G Execution Flow Aware Profiling for ROS-based Autonomous Vehicle Software A User-Based Bike Return Algorithm for Docked Bike Sharing Systems Extracting High Definition Map Information from Aerial Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1