{"title":"Deleterious mitochondrial DNA mutations accumulate in aging human tissues","authors":"Norman Arnheim, Gino Cortopassi","doi":"10.1016/0921-8734(92)90020-P","DOIUrl":null,"url":null,"abstract":"<div><p>This paper reviews the current state of knowledge of the contribution of mitochondrial DNA (mtDNA) mutations to the phenotype of aging. Its major focus is on the discovery of deletions of mtDNA which previously were thought to occur only in individuals with neuromuscular disease. One particular deletion (mtDNA<sup>4977</sup>) accumulates with age primarily in non-dividing cells such as muscle and brain of normal individuals. The level of the deletion rises with age by more than 1000 fold in heart and brain and to a lesser extent in other tissues. In the brain, different regions have substantially different levels of the deletion. High levels of accumulation of the deletion in tissues are correlated with high oxygen consumption. We speculate that oxidative damage to mtDNA may be ‘catastrophic’; mutations affecting mitochondrially encoded polypeptides involved in electron transport could increase free radical generation leading to more mtDNA damage.</p></div>","PeriodicalId":100937,"journal":{"name":"Mutation Research/DNAging","volume":"275 3","pages":"Pages 157-167"},"PeriodicalIF":0.0000,"publicationDate":"1992-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0921-8734(92)90020-P","citationCount":"216","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research/DNAging","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/092187349290020P","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 216
Abstract
This paper reviews the current state of knowledge of the contribution of mitochondrial DNA (mtDNA) mutations to the phenotype of aging. Its major focus is on the discovery of deletions of mtDNA which previously were thought to occur only in individuals with neuromuscular disease. One particular deletion (mtDNA4977) accumulates with age primarily in non-dividing cells such as muscle and brain of normal individuals. The level of the deletion rises with age by more than 1000 fold in heart and brain and to a lesser extent in other tissues. In the brain, different regions have substantially different levels of the deletion. High levels of accumulation of the deletion in tissues are correlated with high oxygen consumption. We speculate that oxidative damage to mtDNA may be ‘catastrophic’; mutations affecting mitochondrially encoded polypeptides involved in electron transport could increase free radical generation leading to more mtDNA damage.