Attention Mining Branch for Optimizing Attention Map

Takaaki Iwayoshi, Masahiro Mitsuhara, Masayuki Takada, Tsubasa Hirakawa, Takayoshi Yamashita, H. Fujiyoshi
{"title":"Attention Mining Branch for Optimizing Attention Map","authors":"Takaaki Iwayoshi, Masahiro Mitsuhara, Masayuki Takada, Tsubasa Hirakawa, Takayoshi Yamashita, H. Fujiyoshi","doi":"10.23919/MVA51890.2021.9511357","DOIUrl":null,"url":null,"abstract":"Attention branch networks (ABNs) can achieve high accuracy by visualizing the attention area of the network during inference and utilizing it in the recognition process. However, if the attention area does not highlight the target object to be recognized, it may cause recognition failure. While there is a method for fine-tuning the ABN using attention maps modified by human knowledge, it takes up a lot of labor and time because the attention map needs to be modified manually. In this paper, we propose a method that automatically optimizes the attention map by introducing an attention mining branch to the ABN. Our evaluation experiments show that the proposed method improves the recognition accuracy and obtains an attention map that appropriately focuses on the target object to be recognized.","PeriodicalId":312481,"journal":{"name":"2021 17th International Conference on Machine Vision and Applications (MVA)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA51890.2021.9511357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Attention branch networks (ABNs) can achieve high accuracy by visualizing the attention area of the network during inference and utilizing it in the recognition process. However, if the attention area does not highlight the target object to be recognized, it may cause recognition failure. While there is a method for fine-tuning the ABN using attention maps modified by human knowledge, it takes up a lot of labor and time because the attention map needs to be modified manually. In this paper, we propose a method that automatically optimizes the attention map by introducing an attention mining branch to the ABN. Our evaluation experiments show that the proposed method improves the recognition accuracy and obtains an attention map that appropriately focuses on the target object to be recognized.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化注意图的注意挖掘分支
注意分支网络(ABNs)通过在推理过程中对网络的注意区域进行可视化并将其应用于识别过程,从而达到较高的准确率。但是,如果注意区域没有突出待识别的目标物体,则可能导致识别失败。虽然有一种利用人类知识修改的注意图对ABN进行微调的方法,但由于注意图需要手工修改,因此需要耗费大量的人力和时间。在本文中,我们提出了一种通过在ABN中引入注意力挖掘分支来自动优化注意力图的方法。我们的评估实验表明,该方法提高了识别精度,并获得了适当聚焦于待识别目标物体的注意图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Output augmentation works well without any domain knowledge On the Influence of Viewpoint Change for Metric Learning Shape from shading and polarization constrained by approximate shape Crack Segmentation for Low-Resolution Images using Joint Learning with Super- Resolution Estimating Contribution of Training Datasets using Shapley Values in Data-scale for Visual Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1