Managing the Supply Chain for the Crops Directed from Agricultural Fields using Blockchains

G. Kannan, Manjula Pattnaik, G. Karthikeyan, B. E., P. J. Augustine, Lohith J J
{"title":"Managing the Supply Chain for the Crops Directed from Agricultural Fields using Blockchains","authors":"G. Kannan, Manjula Pattnaik, G. Karthikeyan, B. E., P. J. Augustine, Lohith J J","doi":"10.1109/ICEARS53579.2022.9752088","DOIUrl":null,"url":null,"abstract":"Modern supply chain management relies heavily on crop processing technologies and blockchain technology. However, the majority of crop processing technology fails due to a lack of available supply chain management technologies. A supply chain management system based on crop processing is developed in this research. Digital ledger technology (blockchain) takes care of supply chains and deep learning image processing (crop processing). To process the harvested crops, the study makes use of machine learning techniques. Blockchain supply chain management technology is then used to deliver the processed crops to the shops. Consequently, the research permits the accurate and transparent distribution of crops to users in an optimal and secure manner. The full hybrid model is tested in a simulation to see if it can improve agricultural production and supply chain management. This new strategy improves agricultural processing rates, and when combined with the blockchain distributed ledger technology, this results in optimal crop management for the required users.","PeriodicalId":252961,"journal":{"name":"2022 International Conference on Electronics and Renewable Systems (ICEARS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Electronics and Renewable Systems (ICEARS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEARS53579.2022.9752088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Modern supply chain management relies heavily on crop processing technologies and blockchain technology. However, the majority of crop processing technology fails due to a lack of available supply chain management technologies. A supply chain management system based on crop processing is developed in this research. Digital ledger technology (blockchain) takes care of supply chains and deep learning image processing (crop processing). To process the harvested crops, the study makes use of machine learning techniques. Blockchain supply chain management technology is then used to deliver the processed crops to the shops. Consequently, the research permits the accurate and transparent distribution of crops to users in an optimal and secure manner. The full hybrid model is tested in a simulation to see if it can improve agricultural production and supply chain management. This new strategy improves agricultural processing rates, and when combined with the blockchain distributed ledger technology, this results in optimal crop management for the required users.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用区块链管理来自农田的农作物供应链
现代供应链管理很大程度上依赖于农作物加工技术和区块链技术。然而,由于缺乏可用的供应链管理技术,大多数作物加工技术失败。本研究开发了一个基于农作物加工的供应链管理系统。数字分类账技术(区块链)负责供应链和深度学习图像处理(作物处理)。为了处理收获的作物,该研究利用了机器学习技术。然后使用区块链供应链管理技术将加工过的作物运送到商店。因此,该研究允许以最佳和安全的方式准确和透明地向用户分配作物。在模拟中测试了全混合模型,看看它是否能改善农业生产和供应链管理。这种新策略提高了农业加工率,当与区块链分布式账本技术相结合时,可以为所需用户提供最佳的作物管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Solar Tracker Using Micro-controller "Core Strength" of Dance Lala Training Considering the Body Motion Tracking Video and Predictive Model Textile Antenna –Structure, Material and Applications Automated Classification of Atherosclerosis in Coronary Computed Tomography Angiography Images Based on Radiomics Study Using Automatic Machine Learning Cryptocurrency Exchange Rate Prediction using ARIMA Model on Real Time Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1