Ellipse Detection of Optic Disc-and-Cup Boundary in Fundus Images

Zeya Wang, Nanqing Dong, Sean D. Rosario, Min Xu, P. Xie, E. Xing
{"title":"Ellipse Detection of Optic Disc-and-Cup Boundary in Fundus Images","authors":"Zeya Wang, Nanqing Dong, Sean D. Rosario, Min Xu, P. Xie, E. Xing","doi":"10.1109/ISBI.2019.8759173","DOIUrl":null,"url":null,"abstract":"Glaucoma is an eye disease that damages the optic nerve and leads to loss of vision. The diagnosis of glaucoma involves measurement of cup-to-disc ratio from retinal fundus images, which necessitates the detection of the optic disc-and-cup boundary as a crucial task for glaucoma screening. Most existing computer-aided diagnosis (CAD) systems focus on the segmentation approaches but ignore the localization approaches, which requires less human annotation cost. In this paper, we propose a deep learning-based framework to jointly localize the ellipse for the optic disc (OD) and optic cup (OC) regions. Instead of detecting a bounding box like in most object detection approaches, we directly estimate the parameters of an ellipse that suffices to capture the morphology of each OD and OC region for calculating the cup-to-disc ratio. We use two modules to detect the ellipses for OD and OC regions, where the OD region serves as attention to the OC region. The proposed framework achieves competitive results against the state-of-the-art segmentation methods with less supervision. We empirically evaluate our framework with the recent state-of-the-art segmentation models on two scenarios where the training data and test data come from the same and different domains.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Glaucoma is an eye disease that damages the optic nerve and leads to loss of vision. The diagnosis of glaucoma involves measurement of cup-to-disc ratio from retinal fundus images, which necessitates the detection of the optic disc-and-cup boundary as a crucial task for glaucoma screening. Most existing computer-aided diagnosis (CAD) systems focus on the segmentation approaches but ignore the localization approaches, which requires less human annotation cost. In this paper, we propose a deep learning-based framework to jointly localize the ellipse for the optic disc (OD) and optic cup (OC) regions. Instead of detecting a bounding box like in most object detection approaches, we directly estimate the parameters of an ellipse that suffices to capture the morphology of each OD and OC region for calculating the cup-to-disc ratio. We use two modules to detect the ellipses for OD and OC regions, where the OD region serves as attention to the OC region. The proposed framework achieves competitive results against the state-of-the-art segmentation methods with less supervision. We empirically evaluate our framework with the recent state-of-the-art segmentation models on two scenarios where the training data and test data come from the same and different domains.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
眼底图像中盘杯边界的椭圆检测
青光眼是一种损害视神经并导致视力丧失的眼部疾病。青光眼的诊断需要测量视网膜眼底图像的杯盘比,这就需要检测视盘和杯的边界,这是青光眼筛查的关键任务。现有的计算机辅助诊断(CAD)系统大多侧重于分割方法,而忽略了需要较少人工标注成本的定位方法。在本文中,我们提出了一个基于深度学习的框架来联合定位视盘(OD)和视杯(OC)区域的椭圆。我们不像大多数物体检测方法那样检测一个边界框,而是直接估计一个椭圆的参数,这个椭圆足以捕获每个OD和OC区域的形态,从而计算杯盘比。我们使用两个模块来检测OD和OC区域的省略号,其中OD区域作为OC区域的关注。该框架在较少监督的情况下实现了与最先进的分割方法的竞争结果。我们在训练数据和测试数据来自相同和不同领域的两种情况下,用最新的最先进的分割模型对我们的框架进行了经验评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regularisation With a Dictionary of Lines for Medical Ultrasound Image Deconvolution On Multifractal Tissue Characterization in Ultrasound Imaging A Deep Learning Approach To Identify MRNA Localization Patterns Deforming Tessellations For The Segmentation Of Cell Aggregates Multi-Shell Diffusion MRI Measures of Brain Aging: A Preliminary Comparison From ADNI3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1