An optimized fingerprint matcher

Shuvra Chakraborty
{"title":"An optimized fingerprint matcher","authors":"Shuvra Chakraborty","doi":"10.1109/ICIINFS.2011.6038063","DOIUrl":null,"url":null,"abstract":"This paper presents a fingerprint matching system which uses eight directional Gabor filter bank, a popular method for enhancing poor quality image, to capture global and local information available in the fingerprints. A new region of interest has been experimented for feature vector compaction. Here, feature vectors are extracted from the directional representation of enhanced image. Matching is extremely fast as it computes only Euclidian difference between feature vectors to compute matching score. Feature vector requires least memory as compared to traditional minutiae based approach as it stores only 64 intensity values. This filter-bank approach has been tested on 800 images of DB1_a of FVC 2002 and 77.125% images are accepted correctly.","PeriodicalId":353966,"journal":{"name":"2011 6th International Conference on Industrial and Information Systems","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Conference on Industrial and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIINFS.2011.6038063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a fingerprint matching system which uses eight directional Gabor filter bank, a popular method for enhancing poor quality image, to capture global and local information available in the fingerprints. A new region of interest has been experimented for feature vector compaction. Here, feature vectors are extracted from the directional representation of enhanced image. Matching is extremely fast as it computes only Euclidian difference between feature vectors to compute matching score. Feature vector requires least memory as compared to traditional minutiae based approach as it stores only 64 intensity values. This filter-bank approach has been tested on 800 images of DB1_a of FVC 2002 and 77.125% images are accepted correctly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化的指纹匹配器
本文提出了一种基于八方向Gabor滤波器组的指纹匹配系统,该系统用于捕获指纹中的全局和局部信息。一个新的感兴趣的区域已经被实验用于特征向量压缩。在这里,从增强图像的方向表示中提取特征向量。匹配非常快,因为它只计算特征向量之间的欧几里得差来计算匹配分数。与传统的基于细节的方法相比,特征向量只存储64个强度值,需要的内存最少。该滤波组方法已在FVC 2002的800幅DB1_a图像上进行了测试,正确率为77.125%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Selective load control to provide primary frequency response in the wake of introducing new large thermal power plants to Sri Lanka A trust computing mechanism for cloud computing with multilevel thresholding Distributed beamforming techniques for dual-hop decode-and-forward MIMO relay networks Performance comparison of optical receivers using different filtering algorithms and modulation schemes A radial basis function neural network approach for multi-hour short term load-price forecasting with type of day parameter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1