Improving a text classifier using text augmentation: road traffic content from Twitter

Thawatchai Raksachat, Rathachai Chawuthai
{"title":"Improving a text classifier using text augmentation: road traffic content from Twitter","authors":"Thawatchai Raksachat, Rathachai Chawuthai","doi":"10.1109/ECTI-CON58255.2023.10153191","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to develop a more effective method for categorizing Thai-language tweets related to traffic. The categorization consists of five categories. Previous studies have utilized CNN and BERT for classification, but have faced the challenge of needing balanced data for improved performance. To address this, we propose the use of BPEmb to augmentation the data and calculate cosine similarity. The subsequent step will be to create a balanced dataset to train a combination of CNN and bi-LSTM models for tweet classification. Our experiment demonstrates a significant improvement in tweet classification with a 14.3% increase in F1-score compared to the baseline method.","PeriodicalId":340768,"journal":{"name":"2023 20th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 20th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTI-CON58255.2023.10153191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this study is to develop a more effective method for categorizing Thai-language tweets related to traffic. The categorization consists of five categories. Previous studies have utilized CNN and BERT for classification, but have faced the challenge of needing balanced data for improved performance. To address this, we propose the use of BPEmb to augmentation the data and calculate cosine similarity. The subsequent step will be to create a balanced dataset to train a combination of CNN and bi-LSTM models for tweet classification. Our experiment demonstrates a significant improvement in tweet classification with a 14.3% increase in F1-score compared to the baseline method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用文本增强改进文本分类器:来自Twitter的道路交通内容
本研究的目的是开发一种更有效的方法来分类与流量相关的泰语推文。分类包括五类。以前的研究利用CNN和BERT进行分类,但面临着需要平衡数据来提高性能的挑战。为了解决这个问题,我们建议使用BPEmb来增强数据并计算余弦相似度。接下来的步骤将是创建一个平衡的数据集来训练CNN和bi-LSTM模型的组合,用于tweet分类。我们的实验证明了tweet分类的显著改进,与基线方法相比f1得分提高了14.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing and Implementing a Real-Time Mass Health Screening System: MFU.Pass Low-Frequency Wave Propagation in the Cave Developing Steps for Learning Programming through Gamification Hyperbolic Pattern Detection in Ground Penetrating Radar Images Using Faster R-CNN CMA-Based Metasurface-Based Circularly Polarized Patch Antenna for SATCOM Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1