Vectorized fingerprint representation using Minutiae Relation Code

N. Abe, Takashi Shinzaki
{"title":"Vectorized fingerprint representation using Minutiae Relation Code","authors":"N. Abe, Takashi Shinzaki","doi":"10.1109/ICB.2015.7139103","DOIUrl":null,"url":null,"abstract":"Minutiae-based vector representation algorithms have been proposed, which allow us not only to speed up matching tasks, but also to easily apply for various template protection techniques, such as Fuzzy Vault, Fuzzy Commitment, and BioHashing. In this paper, we propose a new vectorized fingerprint descriptor called Minutiae Relation Code(MRC), which consists of a set of vector-represented minutiae relation information between arbitrary minutiae. We also evaluate authentication performances using FVC2002 Database(DB1, DB2, DB3, DB4) and we show 0.82% Equal Error Rate(EER) in DB1, 0.82% in DB2, 2.71% in DB3, and 1.49% in DB4.","PeriodicalId":237372,"journal":{"name":"2015 International Conference on Biometrics (ICB)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB.2015.7139103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Minutiae-based vector representation algorithms have been proposed, which allow us not only to speed up matching tasks, but also to easily apply for various template protection techniques, such as Fuzzy Vault, Fuzzy Commitment, and BioHashing. In this paper, we propose a new vectorized fingerprint descriptor called Minutiae Relation Code(MRC), which consists of a set of vector-represented minutiae relation information between arbitrary minutiae. We also evaluate authentication performances using FVC2002 Database(DB1, DB2, DB3, DB4) and we show 0.82% Equal Error Rate(EER) in DB1, 0.82% in DB2, 2.71% in DB3, and 1.49% in DB4.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于细节关系码的指纹矢量化表示
已经提出了基于细节的向量表示算法,它不仅可以加快匹配任务,而且可以很容易地应用各种模板保护技术,如模糊保险库、模糊承诺和生物哈希。本文提出了一种新的矢量化指纹描述符,称为细节关系码(MRC),它由任意细节之间的一组向量表示的细节关系信息组成。我们还使用FVC2002数据库(DB1、DB2、DB3、DB4)对身份验证性能进行了评估,结果显示,DB1的等错误率(EER)为0.82%,DB2为0.82%,DB3为2.71%,DB4为1.49%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and robust self-training beard/moustache detection and segmentation Composite sketch recognition via deep network - a transfer learning approach Cross-sensor iris verification applying robust fused segmentation algorithms Multi-modal authentication system for smartphones using face, iris and periocular An efficient approach for clustering face images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1