{"title":"A Discontinuous Galerkin Scheme for Transient Multiphysics Simulation of Organic Electrochemical Transistors","authors":"Ming Dong, Liang Chen, H. Bağcı","doi":"10.1109/AP-S/USNC-URSI47032.2022.9886371","DOIUrl":null,"url":null,"abstract":"A time domain discontinuous Galerkin (DGTD)-based framework is developed to analyze three-dimensional organic electrochemical transistors (OECTs). The proposed framework uses a local DG scheme to discretize the (non-linearly) coupled system of the Poisson equation (in electric potential) and the drift-diffusion (DD) equations (in charge densities) in space. To reduce the computational requirements, a dual-mesh scheme, which uses a dense mesh for the DD equations and a much coarser mesh for the Poisson equation, is used. Furthermore, an implicit-explicit time integration scheme, which allows for a significantly larger time-step size, is utilized to efficiently account for the extremely long response time of OECTs. Numerical results are provided to demonstrate the applicability and accuracy of the proposed solver.","PeriodicalId":371560,"journal":{"name":"2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AP-S/USNC-URSI47032.2022.9886371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A time domain discontinuous Galerkin (DGTD)-based framework is developed to analyze three-dimensional organic electrochemical transistors (OECTs). The proposed framework uses a local DG scheme to discretize the (non-linearly) coupled system of the Poisson equation (in electric potential) and the drift-diffusion (DD) equations (in charge densities) in space. To reduce the computational requirements, a dual-mesh scheme, which uses a dense mesh for the DD equations and a much coarser mesh for the Poisson equation, is used. Furthermore, an implicit-explicit time integration scheme, which allows for a significantly larger time-step size, is utilized to efficiently account for the extremely long response time of OECTs. Numerical results are provided to demonstrate the applicability and accuracy of the proposed solver.