A novel evolution strategy for constrained optimization in engineering design

A. Kuşakcı, M. Can
{"title":"A novel evolution strategy for constrained optimization in engineering design","authors":"A. Kuşakcı, M. Can","doi":"10.1109/ICAT.2013.6684072","DOIUrl":null,"url":null,"abstract":"Nature Inspired Algorithms (NIAs) are extensively employed to solve constrained optimization problems (COPs) in engineering design domain. Since the global optimum for almost all benchmark problems are already identified, improving the objective function value is not possible. However, an improvement in terms of number of objective function evaluations (FES) and reliability is still likely. This paper proposes an Evolution Strategy (ES) with a Covariance Matrix Adaptation (CMA)-like mutation operator and a ranking based constraint-handling method. The results indicate that the algorithm is able to find the global optimum in less FES and with high reliability when compared with the benchmarked methods.","PeriodicalId":348701,"journal":{"name":"2013 XXIV International Conference on Information, Communication and Automation Technologies (ICAT)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 XXIV International Conference on Information, Communication and Automation Technologies (ICAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAT.2013.6684072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Nature Inspired Algorithms (NIAs) are extensively employed to solve constrained optimization problems (COPs) in engineering design domain. Since the global optimum for almost all benchmark problems are already identified, improving the objective function value is not possible. However, an improvement in terms of number of objective function evaluations (FES) and reliability is still likely. This paper proposes an Evolution Strategy (ES) with a Covariance Matrix Adaptation (CMA)-like mutation operator and a ranking based constraint-handling method. The results indicate that the algorithm is able to find the global optimum in less FES and with high reliability when compared with the benchmarked methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的工程设计约束优化进化策略
在工程设计领域,自然启发算法(NIAs)被广泛用于求解约束优化问题。由于几乎所有基准问题的全局最优都已经确定,因此不可能改进目标函数值。然而,在目标函数评价(FES)的数量和可靠性方面仍有可能改进。提出了一种基于协方差矩阵自适应(CMA)变异算子和排序约束处理方法的进化策略(ES)。结果表明,与基准方法相比,该算法能够在较小的FES范围内找到全局最优解,具有较高的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamical compensation of bounded external impacts for yaw stabilisation system Output disturbance rejection using parallel model predictive control An algorithm for boost converter efficiency optimization Adaptive behavior-based control for robot navigation: A multi-robot case study Gradient based adaptive trajectory tracking control for mobile robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1