SE-SqueezeNet: SqueezeNet extension with squeeze-and-excitation block

S. Kajkamhaeng, C. Phongpensri
{"title":"SE-SqueezeNet: SqueezeNet extension with squeeze-and-excitation block","authors":"S. Kajkamhaeng, C. Phongpensri","doi":"10.1504/IJCSE.2021.115105","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks have been popularly used for image recognition tasks. It is known that deep convolutional neural network can yield high recognition accuracy while training it can be very time-consuming. AlexNet was one of the very first networks shown to be effective for the tasks. However, due to its large kernel sizes and fully connected layers, the training time is significant. SqueezeNet has been known as smaller network that yields the same performance as AlexNet. Based on SqueezeNet, we are interested in exploring the effective insertion of the squeeze-and-excitation (SE) module into SqueezeNet that can further improve the performance and cost efficiency. The promising methodology and pattern of module insertion have been explored. The experimental results for evaluating the module insertion show the improvement on top1 accuracy by 1.55% and 3.32% while the model size is enlarged by up to 16% and 10% for CIFAR100 and ILSVRC2012 datasets respectively.","PeriodicalId":340410,"journal":{"name":"Int. J. Comput. Sci. Eng.","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCSE.2021.115105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Convolutional neural networks have been popularly used for image recognition tasks. It is known that deep convolutional neural network can yield high recognition accuracy while training it can be very time-consuming. AlexNet was one of the very first networks shown to be effective for the tasks. However, due to its large kernel sizes and fully connected layers, the training time is significant. SqueezeNet has been known as smaller network that yields the same performance as AlexNet. Based on SqueezeNet, we are interested in exploring the effective insertion of the squeeze-and-excitation (SE) module into SqueezeNet that can further improve the performance and cost efficiency. The promising methodology and pattern of module insertion have been explored. The experimental results for evaluating the module insertion show the improvement on top1 accuracy by 1.55% and 3.32% while the model size is enlarged by up to 16% and 10% for CIFAR100 and ILSVRC2012 datasets respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SE-SqueezeNet:具有挤压和激励块的SqueezeNet扩展
卷积神经网络已广泛用于图像识别任务。众所周知,深度卷积神经网络可以产生很高的识别准确率,但训练它非常耗时。AlexNet是第一批被证明对这些任务有效的网络之一。然而,由于它的核大小大,层完全连接,训练时间很长。SqueezeNet被称为更小的网络,产生与AlexNet相同的性能。基于SqueezeNet,我们有兴趣探索在SqueezeNet中有效插入挤压激励(SE)模块,以进一步提高性能和成本效率。探索了有前途的模块插入方法和模式。实验结果表明,CIFAR100和ILSVRC2012数据集的top1精度分别提高了1.55%和3.32%,模型大小分别扩大了16%和10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ECC-based lightweight mutual authentication protocol for fog enabled IoT system using three-way authentication procedure Gene selection and classification combining information gain ratio with fruit fly optimisation algorithm for single-cell RNA-seq data Attitude control of an unmanned patrol helicopter based on an optimised spiking neural membrane system for use in coal mines CEMP-IR: a novel location aware cache invalidation and replacement policy Prediction of consumer preference for the bottom of the pyramid using EEG-based deep model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1