Estimation of respiratory rate from smartphone's acceleration data

Thanakij Pechprasarn, Suporn Pongnumkul
{"title":"Estimation of respiratory rate from smartphone's acceleration data","authors":"Thanakij Pechprasarn, Suporn Pongnumkul","doi":"10.1109/ECTICON.2013.6559610","DOIUrl":null,"url":null,"abstract":"Abnormal respiratory rates have been shown to be an important predictor of serious clinical illness, but respiratory rate is a vital sign that is often not recorded because methods for measuring respiratory rates are cumbersome. We propose an approach to record and monitor respiratory rate of a patient that is lying down by placing an accelerometer-equipped smartphone on the patient's chest. We develop an algorithm based on fast Fourier transform (FFT) to estimate the respiratory rate from the noisy acceleration data. The main contribution of this paper is that our proposed algorithm can estimate respiratory rates using only tri-axial acceleration data from sensor in commodity smartphones without any other special equipment. Preliminary results show that our method can reasonably estimate the respiratory rate.","PeriodicalId":273802,"journal":{"name":"2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTICON.2013.6559610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Abnormal respiratory rates have been shown to be an important predictor of serious clinical illness, but respiratory rate is a vital sign that is often not recorded because methods for measuring respiratory rates are cumbersome. We propose an approach to record and monitor respiratory rate of a patient that is lying down by placing an accelerometer-equipped smartphone on the patient's chest. We develop an algorithm based on fast Fourier transform (FFT) to estimate the respiratory rate from the noisy acceleration data. The main contribution of this paper is that our proposed algorithm can estimate respiratory rates using only tri-axial acceleration data from sensor in commodity smartphones without any other special equipment. Preliminary results show that our method can reasonably estimate the respiratory rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从智能手机的加速数据估计呼吸频率
异常呼吸频率已被证明是严重临床疾病的重要预测指标,但由于测量呼吸频率的方法繁琐,呼吸频率是一个通常没有记录的生命体征。我们提出了一种方法来记录和监测呼吸频率的病人躺下,通过放置一个配备加速度计的智能手机在病人的胸部。提出了一种基于快速傅里叶变换(FFT)的呼吸速率估计算法。本文的主要贡献在于,我们提出的算法可以仅使用来自商用智能手机传感器的三轴加速度数据来估计呼吸速率,而无需任何其他特殊设备。初步结果表明,该方法可以合理地估计呼吸速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CPW-fed dual wideband using stub split-ring rectangular slot antenna A comparative study on different techniques for Thai part-of-speech tagging Bismuth doped ZnO films as anti-reflection coatings for solar cells Multi-channel Collection Tree Protocol for Wireless Sensor Networks Multi-robot coordination using switching of methods for deriving equilibrium in game theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1