{"title":"Can Incremental Learning help with KG Completion?","authors":"Mayar Osama, Mervat Abu Elkheir","doi":"10.5121/csit.2023.130510","DOIUrl":null,"url":null,"abstract":"Knowledge Graphs (KGs) are a type of knowledge representation that gained a lot of attention due to their ability to store information in a structured format. This structure representation makes KGs naturally suited for search engines and NLP tasks like question-answering (QA) and task-oriented systems; however, KGs are hard to construct. While QA datasets are more available and easier to construct, they lack structural representation. This availability of QA datasets made them a rich resource for machine learning models, but these models benefit from the implicit structure in such datasets. We propose a framework to make this structure more pronounced and extract KG from QA datasets in an end-to-end manner, allowing the system to learn new knowledge in incremental learning with a human-in-the-loop (HITL) when needed. We test our framework using the SQuAD dataset and our incremental learning approach with two datasets, YAGO3-10 and FB15K237, both of which show promising results.","PeriodicalId":261978,"journal":{"name":"Computer Science, Engineering and Applications","volume":"2009 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science, Engineering and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2023.130510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Knowledge Graphs (KGs) are a type of knowledge representation that gained a lot of attention due to their ability to store information in a structured format. This structure representation makes KGs naturally suited for search engines and NLP tasks like question-answering (QA) and task-oriented systems; however, KGs are hard to construct. While QA datasets are more available and easier to construct, they lack structural representation. This availability of QA datasets made them a rich resource for machine learning models, but these models benefit from the implicit structure in such datasets. We propose a framework to make this structure more pronounced and extract KG from QA datasets in an end-to-end manner, allowing the system to learn new knowledge in incremental learning with a human-in-the-loop (HITL) when needed. We test our framework using the SQuAD dataset and our incremental learning approach with two datasets, YAGO3-10 and FB15K237, both of which show promising results.