Identifying Color in Motion in Video Sensors

Gang Wu, Amir M. Rahimi, E. Chang, Kingshy Goh, Tomy Tsai, Ankur Jain, Yuan-fang Wang
{"title":"Identifying Color in Motion in Video Sensors","authors":"Gang Wu, Amir M. Rahimi, E. Chang, Kingshy Goh, Tomy Tsai, Ankur Jain, Yuan-fang Wang","doi":"10.1109/CVPR.2006.139","DOIUrl":null,"url":null,"abstract":"Identifying or matching the surface color of a moving object in surveillance video is critical for achieving reliable object-tracking and searching. Traditional color models provide little help, since the surface of an object is usually not flat, the object’s motion can alter the surface’s orientation, and the lighting conditions can vary when the object moves. To tackle this research problem, we conduct extensive data mining on video clips collected under various lighting conditions and distances from several video-cameras. We observe how each of the eleven culture colors can drift in the color space when an object’s surface is in motion. In the color space, we then learn the drift pattern of each culture color for classifying unseen surface colors. Finally, we devise a distance function taking color drift into consideration to perform color identification and matching. Empirical studies show our approach to be very promising: achieving over 95% color-prediction accuracy.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Identifying or matching the surface color of a moving object in surveillance video is critical for achieving reliable object-tracking and searching. Traditional color models provide little help, since the surface of an object is usually not flat, the object’s motion can alter the surface’s orientation, and the lighting conditions can vary when the object moves. To tackle this research problem, we conduct extensive data mining on video clips collected under various lighting conditions and distances from several video-cameras. We observe how each of the eleven culture colors can drift in the color space when an object’s surface is in motion. In the color space, we then learn the drift pattern of each culture color for classifying unseen surface colors. Finally, we devise a distance function taking color drift into consideration to perform color identification and matching. Empirical studies show our approach to be very promising: achieving over 95% color-prediction accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在视频传感器中识别运动中的颜色
在监控视频中,识别或匹配运动物体的表面颜色是实现可靠的目标跟踪和搜索的关键。传统的色彩模型提供的帮助很少,因为物体的表面通常不是平坦的,物体的运动可以改变表面的方向,并且当物体移动时,照明条件也会发生变化。为了解决这个研究问题,我们对在不同照明条件和距离下从几个摄像机收集的视频片段进行了广泛的数据挖掘。我们观察到,当物体的表面处于运动状态时,这11种文化色彩是如何在色彩空间中漂移的。然后在色彩空间中,我们学习每种文化颜色的漂移模式,用于分类未见过的表面颜色。最后,我们设计了一个考虑颜色漂移的距离函数来进行颜色识别和匹配。实证研究表明,我们的方法是非常有前途的:达到95%以上的颜色预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Dynamic Bayesian Network Model for Autonomous 3D Reconstruction from a Single Indoor Image Efficient Maximally Stable Extremal Region (MSER) Tracking Transformation invariant component analysis for binary images Region-Tree Based Stereo Using Dynamic Programming Optimization Probabilistic 3D Polyp Detection in CT Images: The Role of Sample Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1